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I will spend the last week on review of the course material,
beginning with algebraic geometry and moving on to
commutative algebra today. As I did last quarter, I will
concentrate on statements of theorems throughout; don’t worry
about memorizing their proofs, but be able to apply the
theorems.
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I begin with Noether normalization, which is the key tool used to
prove the Nullstellensatz bijection between algebraic subsets of
kn and radical ideals in k[x1 . . . , xn]. First let k be any field.
Noether normalization asserts that any finitely generated
k-algebra A is a finite integral extension of a polynomial ring
k[y1, . . . , yd ] over k ; as a consequence, A is a field if and only if it
is a finite extension of k . If k is algebraically closed, then the only
such A that is a field is k itself. From this the Nullstellensatz asserts
that for such k there is an order-reversing bijection between
radical ideals of k[x1, . . . , xn] and algebraic subsets of kn,
mapping an ideal I to the set Z(I) of its common zeros in kn and
a subset S to the ideal I(S) of all polynomials vanishing at S.
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An ideal I of S = k[x1, . . . , xn] is radical if and only if it is a finite
intersection of prime ideals; on the geometric side, the zero set
Z(I) is uniquely a finite union of varieties, or irreducible algebraic
sets, none of them contained in any of the others, so that Z(I) is
irreducible if and only if I is prime. More generally, any ideal I of P
is a finite intersection ∩Pi of primary ideals Pi , so that every zero
divisor in S/Pi is nilpotent. The radical Qi of each Pi is prime and
the Qi and are uniquely determined by I; also the Pi
corresponding to ideals Qi not contained in other Qj are
uniquely determined by I. More generally, these properties for
any ideal I in a Noetherian ring R and any radical ideal of R is a
finite intersection of prime ideals.
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The most fundamental notion of size of a variety V , or more
generally of an algebraic set A, is that of dimension; this is more
general than but quite analogous to the dimension of a vector
space. It was ultimately defined in three different ways in class.
The most elementary definition looks at strictly increasing chains
of subvarieties of V . If V0 ⊂ · · · ⊂ Vd−1 is a maximal such chain,
then the dimension of V is taken to be d. More algebraically, the
transcendence degree of the quotient field of the coordinate
ring k[V ] is also equal to the dimension of V . In either case, the
dimension of an algebraic set A is the largest dimension of any
of its irreducible components. Algebra and geometry come
together in yet another definition, namely that of the Krull
dimension of k[V ]. This is equal to the largest d such that there is
a strictly increasing chain P0 ⊂ · · · ⊂ Pd−1 of prime ideals of k[V ];
it too coincides with the dimension of V .
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Yet another characterization (not quite a definition) of the
dimension of V comes from Noether normalization: if k[V ] is a
finite integral extension of a polynomial ring k[y1, . . . , yd ], then d
is the dimension of V . This characterization holds also for
algebraic sets, without having to consider their irreducible
components. Note that a 0-dimensional algebraic set A is just a
finite union of points. Such sets are precisely the ones such that
the coordinate ring k[A] is Artinian.
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In the more general setting of a commutative Noetherian ring R,
one first localizes R at a maximal ideal M to compute its
dimension. (I will review localization next time). Then the length
ℓ(R/Mn) of the Artinian ring R/Mn as a module over itself is a
polynomial in n for sufficiently large n; the degree d of this
polynomial is the dimension of R. Alternatively, since the notion
of Krull dimension is well defined for R, the can also be taken as
its dimension; note that any maximal chain of prime ideals in R
necessarily ends at the unique maximal ideal M. Finally, the
minimum number of generators required for an M-primary ideal
of R (with radical M) is also the dimension of R. In particular, the
dimension of a Noetherian local ring is always finite. In general,
the dimension of any Noetherian ring is defined to be the
maximum possible dimension of any of its localizations RM at a
maximal ideal M; this can be infinite if R has infinitely many
maximal ideals.
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The notions of dimension of a variety on the one hand and a
vector space on the other come together in the definition of the
tangent space to a variety at a point, or more generally of a
Noetherian ring R at a maximal ideal M; this is just the dimension
of the quotient M/M2 as an R/M-module. This is bounded below
by the dimension of the localization RM of R at M, but need not
coincide with it in general. If the two coincide, R is said to be
regular at M, or just regular if M is the only maximal ideal of R; if R
is the coordinate ring k[V ] of a variety V , so that M corresponds
to a point v of V , then such a v is called a smooth point of V .
Any variety V ⊂ kn over an algebraically closed field k then has
a nonempty open subset of smooth points; at all other points
(called singular) the tangent space has larger dimension than it
does at the smooth points. If the ideal I(V ) of V is generated by
the polynomials f1, . . . , fr , then the rank of the Jacobian matrix J
of the fi at a point v ∈ V is generically equal to n − d, where d is
the dimension of V .
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An important example of a variety that was repeatedly
mentioned in class is the curve C in k2 defined by the equation
x3 − y2 = 0. The coordinate ring of C is isomorphic to the subring
R = k[t2, t3] of k[t ] generated by t2 and t3. It fails to be a
Dedekind domain, since t = t3/t2 lies in its quotient field and is
integral over R but does not lie in R itself. We can regard C as
either a ramified double or a ramified triple cover of the affine
line k1 via the projection maps to the first or second coordinate,
bearing in mind that typical point on C takes the form (t2, t3) for
a unique t ∈ k . The origin (0, 0) is then the unique singular point
of C, since the tangent space there is two-dimensional. Finally, C
is birational but not isomorphic to k1, via the map sending (t2, t3)
to t for t ̸= 0.
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You have also seen some non-affine varieties, primarily the
projective ones. Here projective space Pn is defined to be the
set of lines L through the origin in kn+1, or equivalently as the set
of points x other than the origin, modulo the equivalence
relation x ∼ ax for all a ∈ k∗. The homogeneous Nullstellensatz
asserts the existence of an order-reversing bijection between
homogeneous radical ideals of k[x0, . . . , xn] other than (x0, . . . , xn)
and algebraic subsets of Pn. The dimension of a subvariety V of
Pn with corresponding ideal I ⊂ k[x0, . . . , xn] is one less than the
dimension of the affine variety C(V ) corresponding to same
ideal I. Any projective variety is a finite union of affine varieties,
each lying in one of the affine pieces isomorphic to An that
make up Pn. Instead of a single coordinate ring k[V ] attached to
V one has a sheaf of functions on the affine open subsets of V ;
the only regular functions defined on all of V are constants.
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Finally, recall that in the Zariski topology on kn (for k an
algebraically closed field) the closed sets (by definition) are the
zero sets Z(I) of ideals I in the corresponding polynomial ring
S = k[x1, . . . , xn]. For k = C this topology is coarser than the usual
Euclidean topology, in that there are many fewer open sets and
the nonempty ones are much larger. In particular, every
nonempty open subset of kn is dense, as it is for any variety (or
more generally for any irreducible topological space). Thanks to
the Nullstellensatz, we can identify the points of kn with the
maximal ideals of S. More generally, for any commutative ring R
(including even non-Noetherian ones) the (prime) spectrum of R
consists of all the prime ideals of R. One defines a topology on
this space by decreeing that the closed sets are the sets V (I) of
prime ideals containing a fixed ideal I.
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In the special case where R = k[A] is the coordinate ring of an
algebraic subset A of kn, one finds that the spectrum Spec R has
a proper subset of points in bijection to the points of A; these
correspond to the maximal ideals of R and are closed in the
topology. Then there are additional points, corresponding to the
non-maximal prime ideals of k[A]; these correspond to the
subvarieties of A. The closure of the point corresponding to the
subvariety V consists of the points corresponding to all
subvarieties of V .

Lecture 6-2: Review, part I June 2, 2025 12 / 1


