Lecture 5-5: Flatness of completions and Krull's Theorem

May 5, 2025

Lecture 5-5: Flatness of completions and K

May 5, 2025

< ∃⇒

1/1

I continue to follow Chapter 10 of Atiyah-Macdonald. Last time I defined the completion \hat{M} of a module M over a ring R with respect to an ideal I; this is a module over the completion \hat{R} of R itself.

I observed last time that rather than using the standard filtration $(M_n = I^n M)$ of M (with respect to I) I could use any stable I-filtration (M'_n) (such that $IM'_n \subset M'_{n+1}$ with equality for sufficiently large n) in place of (M_n) : any two stable I-filtrations define the same topology on M and \hat{M} is the completion of M with respect to this topology. In particular, \hat{R} could also be defined using any stable I-filtration of R.

Recall now the Artin-Rees lemma from the lecture on April 21: it asserts that if (M_n) is a stable *l*-filtration of a finitely generated module *M* over a Noetherian ring *R* and if *M'* is a submodule of *M*, then $(M'n = M' \cap M_n)$ is a stable *l*-filtration of *M'*. Combined with the exactness of the inverse limit for surjective inverse systems proved last time, I get

Theorem

If $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of finitely generated modules over a Noetherian ring *R* and if *I* is an ideal of *R*, then the sequence $0 \to \hat{M}' \to \hat{M} \to \hat{M}'' \to 0$ is exact.

I now relate completions of modules to tensor products, in particular returning to the notion of flatness, which I treated only sketchily in the fall. Recall that a module M over a commutative ring R is called flat if the tensor product functor $\cdot \otimes_R M$ is exact. If I is an ideal, of R and M is an R-module, then there are natural maps $R \to \hat{R}, M \to \hat{M}$ from R and M to their completions and accordingly a natural map $\hat{R} \otimes_R M \to \hat{R} \otimes_R \hat{M} \to \hat{R} \otimes_{\hat{R}} \hat{M} = \hat{M}$. In general, this last map is neither injective nor surjective, but one has

・ロット (雪) (目) (日)

Theorem

If *M* is finitely generated then the map $\hat{R} \otimes_R M \to \hat{M}$ is surjective. If moreover *R* is Noetherian then this map is an isomorphism.

Proof.

It is clear that *I*-adic completion commutes with finite direct sums. Hence if $F \cong \mathbb{R}^n$ then $\hat{\mathbb{R}} \otimes_{\mathbb{R}} F \cong \hat{F}$. If M is finitely generated then we have an exact sequence $0 \to N \to F \to M \to 0$ for a suitable F.

Proof.

This gives rise to an exact sequence $\hat{R} \otimes_R N \to \hat{R} \otimes_R F \to \hat{R} \otimes_R M \to 0$, by the right exactness of $\cdot \otimes_R$, and a sequence $0 \to \hat{N} \to \hat{F} \to \hat{M} \to 0$, together with maps γ, β, α from the first three terms of the first sequence to the second three terms of the second one, making the obvious diagram commute. The map $\delta : \hat{F} \to \hat{M}$ is surjective. A simple diagram chase shows that $\alpha : \hat{R} \otimes_R M \to \hat{M}$ is surjective. If R is Noetherian then the second sequence is exact and it is easy to see that α is an isomorphism.

Thus the functor sending an *R*-module *M* to $\hat{R} \otimes_R M$ is exact on finitely generated *R*-modules *M* if *R* is Noetherian, whence from the definition of the tensor product it is exact on all *R*-modules. (The functor sending *M* to \hat{M} , by contrast, need not be exact on non-finitely generated modules).

ヘロン 人間 とくほ とくほ とう

Here are some more properties of the completion \hat{R} of a Noetherian ring R with respect to an ideal *I*.

Theorem

$$\mathbf{0} \ \hat{I} = \hat{R}I \cong \hat{R} \otimes_{R} I;$$

2
$$(I^n)^{\hat{}} = (\hat{I})^n;$$

$$I^{n}/I^{n+1} \cong \hat{I}^{n}/\hat{I}^{n+1};$$

û is contained in the Jacobson radical of
R.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ヨトイヨト

Proof.

The first assertion follows from the previous result since *I* is finitely generated and $\hat{R}I$ is the range of the map from $\hat{R} \otimes_R I$ to \hat{I} . The second assertion follows from the first. Then we get $R/I^n \cong \hat{R}/\hat{I}^n$ by the exactness of inverse limits for surjective systems, as above, from which the third assertion follows by taking quotients. I showed in class that the series for $(1 - xy)^{-1} = \sum_i (xy)^i$ converges in \hat{R} for any $x \in I, y \in \hat{R}$ whence 1 - xy is invertible in \hat{R} and x lies in the Jacobson radical.

It follows at once that if R is Noetherian local with maximal ideal I, then the completion \hat{R} is again local with maximal ideal \hat{I} . Now I can identify the kernel of the natural map $M \to \hat{M}$, where R is Noetherian, M is a finitely generated R-module, and \hat{M} is its completion with respect to an ideal I of R. The construction shows that this kernel K is the intersection $\bigcap_n I^n M$ of all the submodules $I^n M$.

Krull's Theorem

With notation as above, *K* consists of exactly the $m \in M$ with (1 - i)m = 0 for some $i \in I$.

Proof.

One direction is obvious: if (1 - i)m = 0, m = im, then $m = im = i^2m = \cdots \in K$. Now clearly lK = K; since K is finitely generated, say by k_1, \ldots, k_n , we can set up an $n \times n$ matrix Awhose *i*th column consists of the coefficients when k_i is expressed as an *l*-linear combination of k_j . This matrix acts as the identity on the span K of the k_i ; by the Cayley-Hamilton Theorem, there is $\alpha \in I$ with $(1 - \alpha)K = 0$. The conclusion follows.

It follows that if S is the multiplicatively closed set 1 + I, then the kernels of the maps from R to $S^{-1}R$ and from R to \hat{R} coincide, so that one can regard $S^{-1}R$ as a subring of \hat{R} . Also if R is a Noetherian domain and I is an ideal then $\bigcap_n I^n = 0$, since 1 + I has no zero divisors. Furthermore, if I is contained in the Jacobson radical of R, then the I-topology on a finitely generated R-module is Hausdorff, since 1 + I consists of units in that case. This holds in particular if R is local and I is the unique maximal ideal.