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In this last lecture I conclude my very brief (and rather
idiosyncratic) treatment of linear algebraic groups by defining a
purely combinatorial object that is used to classify a large
number of the most important such groups. I will not give any
proofs, only statements of results. Throughout the basefield k is
algebraically closed and of characteristic 0.
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I begin with an important characterization: a group G is linear
algebraic if and only if it is a closed subgroup of GLn(k) for some
n. This fact, which is not difficult to prove, justifies the adjective
“linear” in the name of these groups. I mention that there are
non-affine algebraic groups as well that do not embed in any
general linear group; the most important of these are the elliptic
curves, which live on projective varieties of dimension one.
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An n × n matrix M is called unipotent if M − I is nilpotent, so that
(M − I)n = 0. Thus the group Un of upper triangular matrices with
ones on the diagonal mentioned in the last lecture consists of
unipotent matrices; accordingly, it too is called unipotent. In fact
every subgroup of GLn consisting of unipotent matrices is
conjugate to a subgroup of Un. Accordingly, every such
subgroup is solvable as an abstract group; more generally, the
solvable subgroups of GLn are exactly those that are conjugate
to a subgroup of Bn, the group of all upper triangular matrices. A
linear algebraic group G is called reductive if it does not have
any proper normal subgroup consisting of unipotent matrices.
This last criterion makes sense because (as mentioned above)
every linear algebraic group is isomorphic to a subgroup of GLn;
it turns out to be independent of the choice of isomorphism and
even of the value of n.
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Reductive algebraic groups over a fixed basefield k , unlike most
objects in mathematics, can be completely classified; in fact the
classification is discrete rather than continuous. It relies on the
classification of certain kind of finite subset of the ordinary
Euclidean space Rn called a root system. Such subsets arise in
the context of reductive groups as follows. Any such group is
generated by a maximal torus T together with finitely many
subgroups isomorphic to the additive group Ga, each
normalized by T . For example, if G = GLn(k), then the maximal
torus can be taken to be group Dn of diagonal matrices, Here
the subgroups correspond to the off-diagonal entries of the
matrices in G; given indices i, j with i ̸= j, the group of matrices in
G equal to the identity apart from their ij-entries form a
one-dimensional subgroup isomorphic to Ga. Conjugating an
element of this group by a diagonal matrix, say with diagonal
entries d1, . . . ,dn, multiplies its ij-entry by the scalar did

−1
j .
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Accordingly, the subset arising in this case consists of all
differences ei − ej of distinct unit coordinate vectors in Rn. In
general, a finite subset R of Rn is called a root system if

1 R spans Rn;
2 If v ∈ R, then the only multiples of v in R are ±v ; in particular,

0 /∈ R;
3 If α, β ∈ R then sαβ = β − 2(β,α)

(α,α) α, the reflection of β by α, lies

in R and 2(β,α)
(α,α) ∈ Z; here (v ,w) denotes the usual dot

product of v ,w ∈ Rn.
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The condition that 2(β,α)
(α,α) ∈ Z is called the crystallographic

condition; it is easy to check that it limits the possible angles
between any α, β ∈ R to integer multiples of π/6 or π/4. Here the
linear transformation sα is the reflection by α: it sends α to its
negative while fixing any vector orthogonal to α. If α = ei , a unit
coordinate vector, then the reflection sα acts on Rn by changing
the sign of the ith coordinate. If α = ei − ej , then sα flips the ith
and jth coordinates; if α = ei + ej , then sα flips the ith and jth
coordinates and changes both their signs.
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A root system R ⊂ Rn+m is said to be irreducible if it is not the
disjoint union of two subsystems R1,R2 living in Rn,Rm,
respectively, embedding these last two spaces into Rn+m in the
obvious way (so that in particular all roots in R1 are orthogonal to
all roots in R2). Any root system is then the orthogonal union of
irreducible subsystems, so that to classify the root systems it
suffices to classify the irreducible ones. We identify any two root
systems R,R′ ⊂ Rn if there is some M ∈ On(R) sending R onto R′.
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It turns out that all irreducible root systems arise from the
following construction. let L be a lattice in a real vector space V ,
that is, the Z-span of an R-basis of V . Then one takes the vectors
of one or two specified square lengths in L (usually 2, or 1 and 2).
Specifically, first let V be the hyperplane in Rn consisting of all
vectors whose coordinates sum to 0 and let L be the intersection
of Zn and V . Taking vectors of square length 2, we get exactly
the differences ei − ej of distinct unit coordinate vectors ei ,ej .
Next let V = Rn, L = Zn, and take all vectors of square length 1 or
2 in L; this yields the vectors ±ei and ±ei ± ej for i ̸= j. Next, in a
small variation of the previous construction, replace the vectors
±ei in the previous root system by ±2ei , leaving the other vectors
unchanged. Finally, take only the vectors of square length 2 in L,
yielding the vectors ±ei ± ej for i ̸= j.
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The preceding four root systems are said to be of types
An−1,Bn,Cn, and Dn, respectively (the subscript in type A is n − 1
rather than n because the ambient space has dimension n − 1).
They correspond to the respective algebraic groups
SLn(k), SO2n+1(k), Sp2n(k), and SO2n(k). Note that orthogonal
groups in even and odd dimensions have to be treated
separately here and that a strange similarity is exhibited
between SO2n+1(k) and Sp2n(k) that one would never have
suspected from the definitions of these groups. Next take V = R8

and let L be the lattice spanned by the ei + ej , the ei − ej , and
(1/2, . . . ,1/2). Taking the vectors of square length 2 in in L, one
gets all the sums ±ei ± ej as before plus the vectors
(±1/2, . . . ,±1/2) involving an even number of + signs (this is
because the vectors in L all have coordinate sums lying in 2Z).
This is the root system of type E8.
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There are two other irreducible root systems of type E, namely E7
and E6; they are obtained from E8 by restricting to the subspaces
V ′,V ′′ of V consisting of vectors orthogonal to e7 + e8 or to
e7 + e8 and e6 + e8, respectively. Finally, we have the root
systems of types F4 and G2. The first is obtained by setting V = R4

and taking L to be the vectors of square length 1 or 2 in the
lattice L spanned by the ei and (1/2, . . . , 1/2); it consists of the
±ei ,±ei ± ej and (±1/2, . . . ,±1/2), where this time the signs are
chosen with no constraints. The second, of type G2, is obtained
by defining V and L as for the root system A2 above, but this time
taking the vectors of square length 2 or 6. This yields the ei − ej
together with all vectors (a,b,c) where a,b,c are a
permutation of either 1, 1,−2 or −1,−1, 2. The root systems of
types E through G (and the algebraic groups corresponding to
them) are called exceptional.
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Irreducible root systems correspond to connected algebraic
groups G that are not just reductive but actually almost simple,
in the sense that all proper normal subgroups of G are finite. The
group G can be explicitly constructed from its root system by
generators and relations. General root systems R correspond to
semisimple groups G: these are products G1G2 . . .Gm of normal
almost simple subgroups Gi such that the intersection of any Gi
and the product of the Gj for j ̸= i is finite. Each Gi corresponds
to an irreducible subsystem of R. Finally, a general reductive
group G is the product GsT of a semisimple group Gs and a torus
T such that the intersection of Gs and T is finite.
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The correspondence between connected semisimple groups
and root systems is not one-to-one; it turns out that (finitely many)
groups can share the same root system. For example, SLn(k) and
the quotient PSLn(k)of this group by its center (cyclic of order n)
both have root systems of type An−1. A slight elaboration of a
root system called a root datum, consisting of the root system
together with a pair of lattices in its underlying Euclidean space,
turns out to correspond bijectively to a connected almost simple
linear algebraic group. The family of algebraic groups with a
fixed root system is such that all members of it are quotients of
one of them by a finite central subgroup.
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I hope this whirlwind tour is enough to whet your appetite to
learn more about algebraic groups at some point in the future.
There is a second-year graduate algebra sequence offered
every other year in which you can learn about Lie algebras,
which are closely related to algebraic groups (in fact every
algebraic group has a Lie algebra). Reductive and semisimple
Lie algebras over algebraically closed fields of characteristic 0
can be classified by their root systems, in much the same
manner as algebraic groups, but a little easier.
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