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I will round out the course with a brief account of linear
algebraic groups (I gave a topics course on these in the fall of
2023). Besides providing examples of some of the most
important and interesting affine varieties, this will tie together the
group theory with which I began the whole sequence last fall
and the algebraic geometry with which I am ending this
sequence. Throughout I fix an algebraically closed field k .
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The basic definition is

Definition
A linear algebraic group is an affine variety G ⊂ kn which also
has a group structure, such that multiplication from G × G to G
and inversion from G to itself are morphisms of varieties.

The most fundamental example is the general linear group
G = GLn(k) of invertible n × n matrices over k . It takes a bit of
work to see that this is an affine variety, since it is defined by an
inequality (nonzero determinant) rather than a family of
equalities. This is overcome as usual by introducing another
variable y , in addition to the n2 variables xij for 1 ≤ i, j ≤ n
corresponding to the entries of an n × n matrix M, and then
defining G by the equation (detM)y = 1. Then G is also
(isomorphic to) an affine open subset of kn2

.
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With the example of GLn(k) in place, one can give many
examples of subgroups defined by polynomial equations which
are therefore algebraic as well. For instance, we have SLn(K ),
the group of n × n matrices of determinant 1, the group On(k) of
orthogonal matrices M (such that MMt = I), and the subgroup
SOn(k) of matrices in On(k) of determinant 1. Somewhat less
familiar, but very important, is the symplectic group Sp2n(k) of all

matrices M ∈ GL2n(k) with MtJM = J, where J =

(
0 In
−In 0

)
is the

2n × 2n matrix having a copy of the n × n identity matrix In in the
upper right corner, −In in the lower left corner, and all other
entries 0.
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Alternatively, we can define On(k) to consist of all n × n matrices
M with f (Mv ,Mw) = f (v ,w) for all v ,w ∈ kn, where
f (v ,w) = f ((v1, . . . ,vn), (w1, . . . ,wn)) =

∑
i viwi is the ordinary dot

product on kn; such an f : kn × kn → k is called a
nondegenerate symmetric bilinear form and arose when I was
doing Galois theory last quarter. Similarly, the symplectic group
Sp2n(k) consists of all 2n × 2n matrices M with
g(Mv ,Mw) = g(v ,w) for all v ,w ∈ k2n, where

g((v1, . . . ,v2n), (w1 . . . ,w2n)) =
n∑

i=1
(v2i−1w2i − v2iw2i−1); such a

g :: k2n × k2n → k is called a nondegenerate skew bilinear form.
Nondegenerate skew bilinear forms exist only in even dimensions
and it turns out that any g ∈ Sp2n(k) automatically has
determinant 1. The groups GLn, SLn,On, SOn, and Sp2n are called
classical.
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There are also the more straightforwardly defined subgroups
Bn ⊂ GLn(k) of upper triangular matrices, Un of upper triangular
matrices with ones on the diagonal, and Dn of diagonal
matrices. This last group is called an (n)-torus; by contrast with
topology or geometry, if S1 is the usual circle group in the
complex plane, then (S1)n is not an algebraic group (it is not
defined by polynomial equations) and so would not be called a
torus. Note that the subgroup U2

∼= k , regarding k as an additive

group, since
(

1 a
0 1

)(
1 b
0 1

)
=

(
1 a + b
0 1

)
. In fact, this group,

often denoted Ga, and the 1-torus k∗, often denoted Gm, turn
out to be the only connected one-dimensional algebraic
groups.
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In general, the irreducible components of an algebraic group G
turn out to be the cosets of its connected component G0
containing the identity and G0 is normal in G, as it would be for
any topological group. Thus these components do not overlap
(unlike the situation for a general variety). It is therefore
customary to speak of a connected algebraic group rather than
an irreducible one. Another nice feature distinguishing algebraic
groups from other varieties is that they have no singular points:
since the differential of the group action takes the tangent
space at one point to the tangent space at any other and the
group must have smooth points, all points are smooth.
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Moreover, given an algebraic group G, suppose that there is a
family {Gi : i ∈ I} of closed connected subgroups of G. Then the
subgroup H that they generate is closed and connected and in
fact there are finitely many indices ii , . . . , im ∈ I with
H = Gi1 . . .Gim . One proves this by choosing indices i1, . . . , im such
that the subvariety Gi1 . . .Gim has maximal dimension. One can
use this to show that the classical groups GLn(k), SLn(k), SOn(k),
and Sp2n(k) are connected, since these groups are well known
to be generated by one-dimensional connected subgroups. For
example, since the row operations of adding a multiple of one
row to another and multiplying a row by a nonzero scalar are
well known to reduce any invertible matrix M to the identity
matrix, and to be implemented by multiplying M by a matrix
lying in a subgroup of GLn(k) isomorphic to G1 or Gm, it follows
that GLn(k) is connected. One can argue similarly for SLn(k),
replacing the mutiplication of one row by a nonzero scalar by
the multiplication of two successive rows by the scalars a,a−1 for
some a ∈ k∗.
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For the other groups SOn(k) and Sp2n(k) one must work a little
harder. If G = Sp2n(k), then denote the value g(v ,w) of the form
g at (v ,w) ∈ (k2n)2 by (v ,w). We then have (v , v) = 0 for every
nonzero v ∈ k2n. For every a ∈ k the symplectic transvection
Tv ,a : k2n → k2n sending w ∈ k2n to w + a(w , v)v is then easily
seen to preserve the form (·, ·) and moreover Tv ,aTv ,b = Tv ,a+b.
Thus the transvections Tv ,a for fixed nonzero v form a subgroup of
G isomorphic to Ga. These subgroups turn out to generate G, so
that G is connected. For G = SOn(k), one argues slightly
differently. Denote the form f (v ,w) by (v ,w) as in the symplectic
case. Then for every nonzero v ∈ kn with (v , v) = 0 (we call such
a v isotropic) there is an isotropic w with (v ,w) = 1. For a ∈ k∗

there is a unique matrix Sv ,a ∈ G sending v to av ,w to a−1w ,
and fixing any vector z with (z, v) = (z,w) = 0. The matrices Sv ,a
for fixed v form a subgroup of G isomorphic to Gm; the
subgroups {Tv ,a : a ∈ k∗} then generate G.
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On the other hand, the group On(k) is not connected; as is well
known, it has two components, with its identity component
being SOn(k). For G = GLn(k) or SLn(k) there is another important
subgroup T consisting of the diagonal matrices in G; we have
T = Dn if G = GLn(k) while T = Dn ∩ SLn(k) if G = SLn(k). In both
cases we call T a maximal torus, since it is a torus in G not
contained in any other. For the symplectic group G = Sp2n(k) we
use a different realization of G, defining it as the set G′ of
matrices X with X tJX = J, with the matrix J defined as above;
then G′ ∼= G. For G = SOn(k) we let I′n be the matrix obtained
from the n × n identity matrix In by reversing the order of its rows
and define G′ as the group of all matrices X with X t I′nX = I′n;
again G′ ∼= G.
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Then in both cases (symplectic and orthogonal) we let T be the
set of diagonal matrices in G′; this is again a maximal torus. Next
time I will indicate how this maximal torus plays a crucial role in
understanding the structure not only of a classical group, but
also of all reductive groups (of which the classical groups are
particular cases).
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