Lecture 5-23: Blowups

May 23, 2025

Lecture 5-23: Blowups

May 23, 2025

æ

1/1

Having spent a fair amount of time on flat modules (or families) over a ring, I now give an important example of a non-flat module, having an exceptional fiber over a ring, which can be used to in effect tame the bad (that is, singular) points on certain varieties, systematically replacing them by less bad points on other varieties. I now switch back to Hartshorne, following pp. 28-9 in section 1.4, but also taking a look at Eisenbud's commutative algebraic presentation of the same construction (on pp. 150-1 of Chapter 5).

In its first instantiation, the basic idea of the construction is to replace a single point on a variety by a copy of projective space, which is used to study the structure of the first variety near the point. Start with affine space \mathbf{A}^n and the point $P = (0, \dots, 0)$ on it. I will blow up \mathbf{A}^n at P, as follows. Consider the product $Y = \mathbf{A}^n \times \mathbf{P}^{n-1}$; this is a variety which is neither affine nor projective, but it is quasi-projective (open in a larger projective variety). Denote the affine coordinates of \mathbf{A}^n by x_1, \ldots, x_n and the homogeneous coordinates of P^{n-1} by y_1, \ldots, y_n . Now take the the closed subvariety X of Y defined by the equations $x_i y_i = x_i y_i$ for all *i*, *j*; these equations make sense since they are homogeneous in the y_i . We call X the blowup of \mathbf{A}^n at P. We have a natural projection $\phi: X \to \mathbf{A}^n$ given by projection to the first factor. We then have the following properties of X.

・ロ・ ・ 日・ ・ ヨ・

э

- If $Q \in \mathbf{A}^n$, $Q \neq P$, then the fiber $\phi^{-1}(Q)$ is a single point. Indeed, the equations defining X specify the y_j uniquely as a point in P^{n-1} if the x_j are not all 0.
- We have $\phi^{-1}(P) \cong \mathbb{P}^{n-1}$. Indeed, there are no conditions on the y_i for a point $(0, \dots, 0, y_1, \dots, y_n)$ to belong to X.
- The points of $\phi^{-1}(P)$ are in bijection to the lines *L* through *P* in **A**^{*n*}. Indeed, this was the original definition given of **P**^{*n*-1}.
- **2** X is irreducible. Indeed, X is the union of $X \phi^{-1}(P)$ and $\phi^{-1}(P)$. The first piece is isomorphic to $\mathbf{A}^n P$, so is irreducible; since it is dense in X, X is irreducible.

・ロ・ ・ 日・ ・ ヨ・

Next I show how to blow up subvarieties of \mathbf{A}^n at points on them.

Definition, p. 29

If V is a closed subvariety of \mathbf{A}^n passing through P, then the blowup of V at P is the closure W of $\phi^{-1}(V - P)$ in X. The morphism $W \to V$ obtained by restricting ϕ to W is also denoted ϕ . The blowup of V at any other point Q of it is accomplished by making a linear change of coordinates sending Q to P.

ヘロン 人間 とくほ とくほ とう

Example

Let V be the plane cubic curve given by the equation $y^2 = x^2(x+1)$. To blow up V at P, we first blow up all of \mathbf{A}^2 at P, obtaining the variety X defined by the equation xu = ty, where x, y are affine coordinates and t, u homogeneous ones. It looks like A^2 with the point P replaced by a copy of P^1 corresponding to the slopes of lines through P. Call this \mathbf{P}^1 the exceptional curve and denote it by E. We then blow up V by combining the equations $y^2 = x^2(x+1)$ and xu = ty. Since \mathbf{P}^1 is covered by the open sets $t \neq 0$ and $u \neq 0$, we consider these equations separately. If $t \neq 0$, then we can take t = 1 and use u as an affine parameter. We then have the equations $y^{2} = x^{2}(x + 1), y = xu$, which together yield $x^{2}(u^{2} - x - 1) = 0$. Thus we get two irreducible components, one defined by x = y = 0, u arbitrary, which is E, and the other by $u^2 = x + 1$, y = xu. This last component is the blowup W of V.

・ロン ・聞 と ・ ヨ と ・ ヨ と

ъ

Example

Note that W meets E at the points $u = \pm 1$. These points correspond to the two branches of V at P. The inverse image of the x-axis in X consists of F and one other irreducible curve. defined by u = 0 and called the strict transform of the x-axis. The strict transform meets E at the point u = 0. Similarly, the strict transform of the y-axis meets E at the point t = 0, u = 1. The effect of blowing up is thus to separate out branches of curves passing through P according to their tangent lines at this point. If the tangent lines have different slopes, their strict transforms do not meet at X; instead, they meet at E at points corresponding to the different slopes. Note finally that P is a singular point of Vbut not of W. We say that W resolves the singularity at P.

More generally, let X be an affine subvariety of \mathbf{A}^n and $Y \subset X$ be a closed subvariety. Let a_1, \ldots, a_r be generators of the coordinate ring R = k[X] of X and let g_0, \ldots, g_s be generators of the vanishing ideal I of Y. The blowup of I in R (Eisenbud, p. 150), is the graded ring $B_l R = R \oplus I \oplus I^2 \oplus \cdots \cong R[t] \subset R[t]$; this is the same as the ring R^* previously introduced in the lecture on April 21 and used to prove the Artin-Rees Lemma. There is a surjection from the polynomial ring $k[x_1, \ldots, x_r, y_0, \ldots, y_s]$ to $B_l R$ sending x_i to a_i and y_i to $g_i t$; its kernel is easily seen to be homogeneous in the y_i . Thus this kernel corresponds to an algebraic subset Z of $\mathbf{A}^r \times \mathbf{P}^s$, which maps onto X via the projection map into \mathbf{A}^r . The set Z is the blowup of Y in X. The projection map is an isomorphism away from the preimage of Y; this preimage, called the exceptional set of the blowup, is the projective variety corresponding to the graded ring $G_l R$.

・ロト ・同ト ・ヨト ・ヨト … ヨ

Thus in effect Z is obtained from X by replacing every point of Y with a copy of \mathbf{P}^s for suitable s. It is easy to check that this construction reduces to the previously defined blowup of \mathbf{A}^n at a point if $X = \mathbf{A}^n$, Y = P, or more generally to the blowup of a subvariety X of \mathbf{A}^n passing through P at P.

A beautiful geometric consequence of the exceptional set in a blowup corresponding to the associated graded ring relative to the vanishing ideal of the smaller variety is the following. Let $R = k[x_1, \ldots, x_n]/J, I = (x_1, \ldots, x_n)$ with k algebraically closed Let X = Z(J) be the algebraic set corresponding to J and suppose that $J \subset I$, so that the origin P lies in X. The tangent cone of X at P is the cone composed of all lines that are the limits of secant lines joining P to another point Q of X as $Q \rightarrow P$. Its ideal turns out to be generated by the initial terms of the polynomials in J_{i} that is, by the homogeneous component of least degree of every polynomial in J.

ヘロン ヘ回 とくほ とく ヨン