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Having spent a fair amount of time on flat modules (or families)
over a ring, I now give an important example of a non-flat
module, having an exceptional fiber over a ring, which can be
used to in effect tame the bad (that is, singular) points on
certain varieties, systematically replacing them by less bad
points on other varieties. I now switch back to Hartshorne,
following pp. 28-9 in section 1.4, but also taking a look at
Eisenbud’s commutative algebraic presentation of the same
construction (on pp. 150-1 of Chapter 5).
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In its first instantiation, the basic idea of the construction is to
replace a single point on a variety by a copy of projective
space, which is used to study the structure of the first variety
near the point. Start with affine space An and the point
P = (0, . . . ,0) on it. I will blow up An at P, as follows. Consider the
product Y = An × Pn−1; this is a variety which is neither affine nor
projective, but it is quasi-projective (open in a larger projective
variety). Denote the affine coordinates of An by x1, . . . , xn and
the homogeneous coordinates of Pn−1 by y1, . . . , yn. Now take
the the closed subvariety X of Y defined by the equations
xiyj = xjyi for all i, j; these equations make sense since they are
homogeneous in the yi . We call X the blowup of An at P. We
have a natural projection ϕ : X → An given by projection to the
first factor. We then have the following properties of X .
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1 If Q ∈ An,Q ̸= P, then the fiber ϕ−1(Q) is a single point.
Indeed, the equations defining X specify the yj uniquely as a
point in Pn−1 if the xi are not all 0.

2 We have ϕ−1(P) ∼= Pn−1. Indeed, there are no conditions on
the yi for a point (0, . . . ,0, y1, . . . , yn) to belong to X .

3 The points of ϕ−1(P) are in bijection to the lines L through P in
An. Indeed, this was the original definition given of Pn−1.

4 X is irreducible. Indeed, X is the union of X − ϕ−1(P) and
ϕ−1(P). The first piece is isomorphic to An − P, so is
irreducible; since it is dense in X ,X is irreducible.
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Next I show how to blow up subvarieties of An at points on them.

Definition, p. 29
If V is a closed subvariety of An passing through P, then the
blowup of V at P is the closure W of ϕ−1(V − P) in X . The
morphism W → V obtained by restricting ϕ to W is also denoted
ϕ. The blowup of V at any other point Q of it is accomplished by
making a linear change of coordinates sending Q to P.
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Example
Let V be the plane cubic curve given by the equation
y2 = x2(x + 1). To blow up V at P, we first blow up all of A2 at P,
obtaining the variety X defined by the equation xu = ty , where
x , y are affine coordinates and t ,u homogeneous ones. It looks
like A2 with the point P replaced by a copy of P1 corresponding
to the slopes of lines through P. Call this P1 the exceptional curve
and denote it by E. We then blow up V by combining the
equations y2 = x2(x + 1) and xu = ty . Since P1 is covered by the
open sets t ̸= 0 and u ̸= 0, we consider these equations
separately. If t ̸= 0, then we can take t = 1 and use u as an
affine parameter. We then have the equations
y2 = x2(x + 1), y = xu, which together yield x2(u2 − x − 1) = 0.
Thus we get two irreducible components, one defined by
x = y = 0,u arbitrary, which is E, and the other by
u2 = x + 1, y = xu. This last component is the blowup W of V .
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Example
Note that W meets E at the points u = ±1. These points
correspond to the two branches of V at P. The inverse image of
the x-axis in X consists of E and one other irreducible curve,
defined by u = 0 and called the strict transform of the x-axis. The
strict transform meets E at the point u = 0. Similarly, the strict
transform of the y-axis meets E at the point t = 0,u = 1. The
effect of blowing up is thus to separate out branches of curves
passing through P according to their tangent lines at this point. If
the tangent lines have different slopes, their strict transforms do
not meet at X ; instead, they meet at E at points corresponding
to the different slopes. Note finally that P is a singular point of V
but not of W . We say that W resolves the singularity at P.
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More generally, let X be an affine subvariety of An and Y ⊂ X be
a closed subvariety. Let a1, . . . ,ar be generators of the
coordinate ring R = k[X ] of X and let g0, . . . ,gs be generators of
the vanishing ideal I of Y . The blowup of I in R (Eisenbud, p. 150),
is the graded ring BIR = R ⊕ I ⊕ I2 ⊕ · · · ∼= R[tI] ⊂ R[t ]; this is the
same as the ring R∗ previously introduced in the lecture on April
21 and used to prove the Artin-Rees Lemma. There is a surjection
from the polynomial ring k[x1, . . . , xr , y0, . . . , ys] to BIR sending xi to
ai and yi to git ; its kernel is easily seen to be homogeneous in the
yi . Thus this kernel corresponds to an algebraic subset Z of
Ar × Ps, which maps onto X via the projection map into Ar . The
set Z is the blowup of Y in X . The projection map is an
isomorphism away from the preimage of Y ; this preimage, called
the exceptional set of the blowup, is the projective variety
corresponding to the graded ring GIR.
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Thus in effect Z is obtained from X by replacing every point of Y
with a copy of Ps for suitable s. It is easy to check that this
construction reduces to the previously defined blowup of An at a
point if X = An,Y = P, or more generally to the blowup of a
subvariety X of An passing through P at P.
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A beautiful geometric consequence of the exceptional set in a
blowup corresponding to the associated graded ring relative to
the vanishing ideal of the smaller variety is the following. Let
R = k[x1, . . . , xn]/J, I = (x1, . . . , xn) with k algebraically closed Let
X = Z(J) be the algebraic set corresponding to J and suppose
that J ⊂ I, so that the origin P lies in X . The tangent cone of X at
P is the cone composed of all lines that are the limits of secant
lines joining P to another point Q of X as Q → P. Its ideal turns
out to be generated by the initial terms of the polynomials in J,
that is, by the homogeneous component of least degree of
every polynomial in J.
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