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I now return to completions of rings, first discussed in the lecture
last quarter on March 7. I start with a very general construction,
valid for any abelian topological group, and then specialize to e
commutative ring setting. I am following Chapter 10 in
Aityah-Macdonald’s book Introduction to Commutative
Algebra.
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To begin with, then, let A be a topological additive abelian
group, so that A has a topology making the group operations
continuous. In this setting one can define the notion of Cauchy
sequence: a sequence (ai) of elements of A is Cauchy if for
every neighborhood U of 0 in A there is in index N such that
whenever i, j ≥ N we have ai − aj ∈ U. Such a sequence
converges to a ∈ A if for every such neighborhood U there is an
index M such that whenever i,≥ M we have ai − a ∈ U. If the
topology on A is Hausdorff, then the limit of any convergent
sequence is unique.
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One can now construct the completion Â of A; roughly speaking
this is the smallest topological group containing A in which all
Cauchy sequences converge. The elements of Â are
equivalence classes of Cauchy sequences (ai) in A, where we
decree that (a1,a2, . . .) ∼ (b1,b2, . . .) if and only if the
interleaved sequence (a1,b1,a2,b2, . . .) is Cauchy. It is easy to
check that this is indeed an equivalence relation. There is an
obvious additive structure on Â, obtained by adding sequences
term by term; one can verify that this operation respects the
equivalence relation. to make Â a topological group, we
decree that an open neighborhood U′ of any equivalence class
[a] = [(a1,a2, . . .) of Cauchy sequences is one consisting of all
sequences (b1,b2, . . .) such that there is an index N such that
ai − bi ∈ U for all i ≥ N, where U is a fixed neighborhood of 0 in A
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Untangling the definition, one finds that a Cauchy sequence
(c1,c2, . . .) of Cauchy sequences ci = (ci,1,ci,2, . . .) in A is one for
which given any neighborhood U of 0 in A there is an index N,
such that whenever i, j, k , ℓ ≥ N we have ci,j −ck,ℓ ∈ U. In order to
be sure that such a sequence converges, we need to make an
additional assumption about A, namely that it is first countable.
This means that there is a countable sequence U1,U2, . . . of
neighborhoods of 0 in A such that any neighborhood of 0
contains Ui for some i. For every a ∈ A, if we set Ua,i = a + Ui then
we get a countable sequence of neighborhoods of a such that
any neighborhood of a contains Ua,i for some i.
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Under this assumption, given a Cauchy sequence (c1,c2, . . .) as
above, it converges to (d1,d2, . . .), where di = cNi ,Ni

and Ni is
chosen so that cj,k − cj,ℓ ∈ Ui for all j, k , ℓ ≥ Ni . In this way we
construct complete topological spaces without using a metric.
For example, the group R under addition can be constructed in
this way from Q, taking Ui to be the open interval (−1/i, 1/i) ∩Q.

Now however I want to consider completions of a very different
flavor than R. I do this by specializing to the case where the
neighborhoods Ui are subgroups of A. Note that if such Ui exist
then A is highly disconnected, since the subgroups Ui are then
simultaneously open (by definition) and closed (since their
complements are unions of cosets and thus also open). The
topology is Hausdorff if and only if the intersection of all the Ui is
the single point 0.
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Finally I can return to the setting of the lecture of March 7: given
a commutative ring R and an ideal I of R, define a topology on
R by decreeing that a subset U is open if and only if it contains
x + In for some n whenever it contains x ∈ R. The ring operations
are then continuous on R. Observe that a sequence (ri) of
elements of R is Cauchy if and only if the image r̄i of ri in the
quotient R/In is eventually constant in i, for all fixed n. Replacing
ri by its image r ′i in R/I i , one obtains a a sequence (r ′0, r

′
1, . . .) as in

the earlier lecture; that is, an element of the inverse limit
attached to the inverse system (Rn = R/In), reviewed below. The
above construction shows that every Cauchy sequence of such
sequences converges.
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I now head toward the proof that if one completes the same
ring R twice with respect to the I-adic topology, the result is the
same as completing it once. To do this, I study the exactness
properties of inverse limits more generally. Let
. . .→ A2 → A1 → A0 be a sequence of abelian groups equipped
with homomorphisms fn : An → An−1. This is called an inverse
system. One then has the inverse limit

←−
A of this system; it consists

of all tuples (a1,a2, . . .) such that ai ∈ Ai for all i and fi(ai) = ai−1

for i ≥ 1. There is an obvious structure of abelian group on
←−
A .

Now suppose that (Bn), (Cn) are two other inverse systems, with
maps gn,hn, respectively, and let

←−
B ,
←−
C be their inverse limits.

Assume that for each n we have a short exact sequence Sn,
namely 0→ An → Bn → Cn → 0 such that the obvious diagram
with Sn as its top row and Sn−1 as its bottom row commutes.
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Set A =
∞∏

i=0
Ai ,B =

∞∏
i=0

Bi ,C =
∞∏

i=0
Ci . Define a map dA : A→ A via

dA(an) = an − fn+1(an+1) for an ∈ An,an+1 ∈ An+1 and define
maps dB,dC similarly. Then

←−
A is just the kernel of dA, and similarly

for
←−
B ,
←−
C . Now we have exact sequences A→ B → C → 0 and

0→ A→ B → C, together with maps dA (resp. dB,dC) from A to
itself (resp. from B,C to themselves) such that an obvious
diagram commutes. Then something called the Snake Lemma
(see Exercise 17.1.3, p. 792) kicks in and asserts that there is an
exact sequence 0→ kerdA → kerdB → kerdC → A/im dA → · · · .
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Now the inverse systems Rn = R/In that I have in mind have the
property that the maps fn are always onto; such systems are
called surjective. Whenever this property holds for the inverse
system (An) and one is given (a1,a2, . . .) ∈ A, one can choose
x0 ∈ A0 arbitrarily and solve the equations xn − fn+1(xn+1) = an for
x1, x2, . . . inductively. The upshot is that taking the inverse limit of
an inverse system is an exact functor when restricted to
surjective systems. In particular, given R and the ideal I, the
exact sequence 0→ In → R → R/In → 0, coupled with the chains
of ideals In ⊃ In+1 ⊃ · · · in In and J0 ⊃ J1 ⊃ · · · ⊃ Jn = 0 in R/In,
where J is the image of I in R/In, show that R/In ∼= R̂/̂In for all n,
where Î is the canonical image of I in R̂; here the completion of
R/In is 0 since every Cauchy sequence is identified with 0. Thus R̂
is I-adically complete: its I-adic completion is isomorphic to R̂
itself.
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We can carry out the same construction with an R-module M in
place of R (given R and the ideal I). Thus we can set Mn = InM
and take the inverse limit M̂ of the inverse system (M/Mn). The
submodules Mn of M are a countable base at 0 for a topology
on M making it a topological R-module (where R has the I-adic
topology). Then M̂ is the completion of M in this topology, also
called the I-adic topology, and it is a R̂-module. In fact one has
considerable freedom of choice in setting it up. We could
replace (Mn) by any stable I-filtration of M in the sense of the
lecture on April 21, that is, by a chain of submodules
M′

0 ⊃ M′
1 ⊃ · · · such that IM′

m ⊆ M′
m+1 for all m with equality for

sufficiently large m. Any two such filtrations define the same
topology on M and accordingly give rise to isomorphic
completions of M. The completion M̂ of M is itself complete with
respect to the I-adic topology.
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