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Continuing with Chapter 6 of Eisenbud, I give an equational
criterion for flatness and use it show that under mild conditions,
given a module over a local ring, it suffices to check the ideal
criterion for flatness given last time on just the maximal ideal.
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I begin by translating the criterion given last time for a sum of
tensors to be 0 in a tensor product to a criterion for flatness.

Equational Criterion for Flatness, p. 165
An R-module M is flat if and only if the following condition is
satisfied: for every relation

∑
i nimi = 0 with mi ∈ M,ni ∈ R there

are elements m′
j ∈ M,aij ∈ R such that

∑
j aijm′

j = mi for all i and∑
i aijni = 0 for all j.

Proposition 6.1 last time says that M is flat if and only if for every
ideal I, an element x =

∑
i ni ⊗ mi ∈ I ⊗ M goes to 0 in R ⊗ M if

and only if
∑

i ni ⊗ mi satisfies the criterion given last time to be 0.
Since the image of x in R ⊗ M = M is

∑
i nimi , the result follows.
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This last criterion can be formulated in terms of a commutative
diagram, as follows.

Corollary 6.6, p. 166
A module M over a ring R is flat if and only if for every map
β : F → M from a free module F of finite rank and for every
submodule K of ker β generated by one element there are maps
γ : F → G, π : G → M with β = πγ,G free, and K ⊂ ker γ.
Equivalently, M is flat if and only if this condition holds for every
finitely generated submodule of ker β. If M is finitely presented,
then M is flat if and only if M is projective.
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Proof.
This is just a translation of the Equational Criterion. An element f
in the kernel of a map from a free module F to M is a relation on
the images mi ∈ M of basis elements of F . The elements m′

j of the
preceding result correspond to a map from another free module
G taking the generators of G to the m′

j . A matrix with entries aij

such that
∑

j aijm′
j = mi corresponds to a map γ as in the

statement; the condition that
∑

i aijni = 0 for all j says that
γ(f ) = 0. If the condition holds for submodules K generated by
single elements, then by composing finitely many maps γ killing
particular elements of ker β, we get such a γ killing any finite
subset of ker β.
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Proof.
Finally, I proved already in the fall that projective modules are
flat. If M is finitely presented, than (by definition) there is a
surjection from a finitely generated free module F onto M whose
kernel K is also finitely generated; choosing γ as in the second
assertion, its image is carried isomorphically onto M by the map
from G, so that the map G → M splits and M is a direct summand
of a free module, hence projective.
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I now prove a result asserting that a nice property of one fiber of
a family implies a nice property of the family itself.

Corollary 6.7, p. 167
Let k be a field and R = k[t ]; let S be a Noetherian ring flat over
R. If the fiber S/tS over the prime (t) is a domain and U is the set
of elements of the 1 − ts for s ∈ S, then the localization S[U−1] of S
at U is a domain.
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Proof.
Since localization preserves flatness, we can replace S by S[U−1]
at the beginning and assume that all elements of the form 1 − ts
are already units of S. Suppose that I, J ⊂ S are ideals with IJ = 0;
we must show that I = 0 or J = 0. Enlarging I and J if necessary,
we may assume that each is the annihilator of the other. Since
IJ ≡ 0 mod (t) and S/(t) is a domain, we may assume that
J ⊂ (t). Then J = (J : t)t , where (J : t) denotes {x ∈ S : xt ⊂ J}.
Since t is a non-zero-divisor of S (by flatness of S) and I(J : t)t = 0,
we get that (J : t) annihilates I, forcing (J : t) ⊂ J, J = Jt . Since J is
finitely generated an application of the Cayley-Hamilton
Theorem shows that (1 − ts)J = 0 for some s ∈ S, forcing J = 0, as
desired.
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Note that the localization is essential in the last result; it is not
always true that the ring S itself is a domain. For example, if
R = k[t ], S = k[x , t ]× k[t , t−1] with k a field, then the fiber over
(t − a) is S/(t − a) for a ∈ k ; when a = 0, this is a domain, since
tk[t , t−1] = k[t , t−1], but for a ̸= 0 the fiber is not a domain (and
neither is S itself). Such pathologies can be avoided by working
with graded rings (or geometrically with projective maps).

Now I can prove the main result, giving a criterion for flatness
using just the maximal ideal of a local ring rather than all ideals.

Local Criterion for Flatness, p. 168
Let R be a local Noetherian ring with maximal ideal I and S a
local Noetherian R-algebra with maximal ideal J. Assume that
IS ⊂ J. If M is a finitely generated S-module, then M is flat over R if
and only if TorR1 (R/I,M) = 0.
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Proof.
We know that if M is flat, then TorR1 (R/I,M) = 0. Now suppose that
S and M are as in the theorem and that the hypothesis on TorR1 is
satisfied. I first show that TorR1 (N,M) = 0 if N has finite length over
R, by induction on the length. The case of length 1 follows from
the hypothesis, since R/I is the only module of length 1 over R.
The long exact sequence for Tor and the inductive hypothesis
then proves the vanishing for any N of finite length. Now let K be
an arbitrary ideal and suppose that u ∈ K ⊗ M is in the kernel of
the multiplication map from K ⊗ M to M. I will show that u = 0.
The S-module structure on M gives K ⊗ M an S-module structure
and we have In(K ⊗ M) ⊂ Jn(K ⊗ M). Since K ⊗ M is finitely
generated over S, Krull’s Theorem on the kernel of the map from
a Noetherian ring to its completion implies that ∩nJn(K ⊗ M) = 0,
whence ∩nIn(K ⊗ M) = 0. Hence it suffices to show that
u ∈ In(K ⊗ M) for every n.
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Proof.
The module In(K ⊗ M) is the image in K ⊗ M of (InK )⊗ M. By the
Artin-Rees lemma, It ∩ K ⊂ In for sufficiently large t , so it suffices to
show that u lies in the image of (It ∩ K )⊗ M for all t . Tensoring the
short exact sequence 0 → It ∩ K → K → K/(It ∩ K ) → 0 with M
produces the exact sequence
(It ∩ K )⊗ M → K ⊗ M → K/(It ∩ K )⊗ M → 0, so it suffices to show
that u goes to 0 in K/(It ∩K )⊗M. The map K ⊗M → K/(It ∩K )⊗M
is obtained by tensoring the map K → K/(It ∩ K ) with M; here K
embeds in R while K/(It ∩ K )⊗ M maps to R/It ⊗ M, say by the
map ϕ⊗ 1. Now it suffices to show that the kernel of ϕ⊗ 1 is 0.
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Proof.
Identifying K/(It ∩ K ) with (K + It)/It , we see that ϕ is the leftmost
map in the exact sequence
0 → (K + It)/It → R/It → R/(K + It) → 0. Applying Tor, we get a
long exact sequence of which a part is
TorR1 (R/(K + It),M) → (K + It)/It ⊗ M → R/It ⊗ M, where the
rightmost map is ϕ⊗ 1, so it is enough to show that
TorR1 ((R/K + It),M) = 0. Since R/(K + It) is annihilated by It , it has
finite length as an R-module, so we are done by the first part of
the proof.
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