Lecture 5-19: Flat modules, continued

May 19, 2025

Lecture 5-19: Flat modules, continued May 19, 2025



Continuing with Chapter 6 of Eisenbud, | give an equational
criterion for flatness and use it show that under mild conditions,
given a module over a local ring, it suffices fo check the ideal
criterion for flatness given last time on just the maximal ideal.
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| begin by translating the criterion given last time for a sum of
tensors to be 0 in a tensor product to a criterion for flatness.

Equational Criterion for Flatness, p. 165

An R-module M is flat if and only if the following condition is
satisfied: for every relation ), nym; = 0 with m; € M, n; € R there
are elements m; € M, g; € R such that -, aym; = m; for all i and
> ia;n; =0 forallj.

Proposition 6.1 last time says that M is flat if and only if for every
ideal /,anelement x =5, nj®@m; € l® Mgoesto0in R M if
and only if ), n; @ m; satisfies the criterion given last time o be 0.
Since the image of xin Ro@ M = Mis > ; nym;, the result follows.
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This last criterion can be formulated in ferms of a commutative
diagram, as follows.

Corollary 6.6, p. 166

A module M over aring R is flat if and only if for every map

B8 : F— M from a free module F of finite rank and for every
submodule K of ker 5 generated by one element there are maps
v:F— G,r:G— Mwith g =77y, G free, and K C ker.
Equivalently, M is flat if and only if this condition holds for every
finitely generated submodule of ker 5. If M is finitely presented,
then M is flat if and only if M is projective.
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Proof.
This is just a franslation of the Equational Criterion. An element f
in the kernel of a map from a free module F to M is a relation on
the images m; € M of basis elements of F. The elements mj of the
preceding result correspond to a map from another free module
G taking the generators of G to the mj’.. A matrix with entries g;
such that >, o,-jmj’. = m; corresponds to a map v as in the
statement; the condition that »°; a;n; = O for all j says that

~(f) = 0. If the condition holds for submodules K generated by
single elements, then by composing finitely many maps ~ killing
particular elements of ker 3, we get such a ~ killing any finite
subset of ker S. O
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Proof.

Finally, | proved already in the fall that projective modules are
flat. If M is finitely presented, than (by definition) there is a
surjection from a finitely generated free module F onto M whose
kernel K is also finitely generated; choosing v as in the second
assertion, its image is carried isomorphically onto M by the map
from G, so that the map G — M splits and M is a direct summand
of a free module, hence projective. O
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| now prove a result asserting that a nice property of one fiber of
a family implies a nice property of the family itself.

Corollary 6.7, p. 167

Let k be a field and R = k[t]; let S be a Noetherian ring flat over
R. If the fiber S/1S over the prime (t) is @ domain and U is the set
of elements of the 1 — tsfor s € S, then the localization S[U~'] of S
at Uis a domain.
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Since localization preserves flatness, we can replace S by S[U~']
at the beginning and assume that all elements of the form 1 — fs
are already units of S. Suppose that I, J ¢ S are ideals with IJ = 0;
we must show that / = 0 or J = 0. Enlarging / and J if necessary,
we may assume that each is the annihilator of the other. Since
IJ=0 mod (f) and S/(t) is a domain, we may assume that

Jc (t). ThenJ = (J: f)t, where (J: t) denotes {x € S: xt C J}.
Since t is a non-zero-divisor of S (by flatness of S) and I(J : )t =0,
we get that (J : 1) annihilates /, forcing (J: t) € J,J = Jf. Since J is
finitely generated an application of the Cayley-Hamilton
Theorem shows that (1 — 1s)J = 0 forsome s € S, forcing J = 0, as
desired. O
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Note that the localization is essential in the last result; it is not
always true that the ring S itself is a domain. For example, if

R = k[f],S = k[x, 1] x k[t, t='] with k a field, then the fiber over
(t—a)is S/(t— a) for a € k; when a =0, this is a domain, since
tk[t, 1] = k[t, 1], but for a # 0 the fiber is not a domain (and
neither is S itself). Such pathologies can be avoided by working
with graded rings (or geometrically with projective maps).

Now | can prove the main result, giving a criterion for flatness
using just the maximal ideal of a local ring rather than all ideals.

Local Criterion for Flatness, p. 168

Let R be a local Noetherian ring with maximal ideal / and S a
local Noetherian R-algebra with maximal ideal J. Assume that

IS c J. If Mis afinitely generated S-module, then M is flat over R if
and only if Tor¥(R/I, M) = 0.
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We know that if M is flat, then Tor¥(R/I, M) = 0. Now suppose that
S and M are as in the theorem and that the hypothesis on Torf is
satisfied. | first show that Torf(N, M) = 0 if N has finite length over
R, by induction on the length. The case of length 1 follows from
the hypothesis, since R/l is the only module of length 1 over R.
The long exact sequence for Tor and the inductive hypothesis
then proves the vanishing for any N of finite length. Now let K be
an arbitrary ideal and suppose that u € K ® M is in the kernel of
the multiplication map from K @ M to M. | will show that u = 0.
The S-module structure on M gives K @ M an S-module structure
and we have ["(K @ M) c J"(K @ M). Since K ® M is finitely
generated over S, Krull’'s Theorem on the kernel of the map from
a Noetherian ring to its completion implies that N,J"(K @ M) =0,
whence Np/"(K ® M) = 0. Hence it suffices to show that

u e I"(K ® M) for every n. O
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Proof.

The module I"(K @ M) is the image in K ® M of (I"K) @ M. By the
Artin-Rees lemma, I' N K ¢ I" for sufficiently large t, so it suffices to
show that u lies in the image of (/' N K) @ M for all t. Tensoring the
short exact sequence 0 — "N K — K — K/(I' N K) — 0 with M
produces the exact sequence

("MKYeM— KoM= K/(ITnK)®o M — 0, so it suffices to show
that ugoesto 0N K/(I'NK)@ M. The map K@M — K/(I'nK) @ M
is obtained by tensoring the map K — K/(I' N K) with M; here K
embeds in R while K/(I" N K) ® M maps to R/I' ® M, say by the
map ¢ ® 1. Now it suffices to show that the kernel of ¢ ® 1is0. [
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Proof.

Identifying K/(I" 0 K) with (K + I") /I, we see that ¢ is the leftmost
map in the exact sequence

0— (K+M/I" = R/I' = R/(K + I') — 0. Applying Tor, we get a
long exact sequence of which a part is

Tor’]?(l?/(K + 1M, M) = (K+M/I"e M — R/I' @ M, where the
rightmost map is ¢ ® 1, so it is enough to show that

TorR((R/K + I"),M) = 0. Since R/(K + I') is annihilated by I, it has
finite length as an R-module, so we are done by the first part of
the proof. O
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