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I return now to Eisenbud, this time starting in Chapter 6. Starting
with a pair of rings R, S with R ⊂ S, so that S is an R-algebra, the
idea is to see how the quotient S/PS behaves as P varies over
prime ideals in R. The collection of quotients S/PS, or just the
single ring S, is called a family; a particular quotient S/PS is
called the fiber over P (viewing P as a point in the Zariski
topology of R). The nicest behavior will occur when S is flat over
R; recall that this means that the functor · ⊗R S is exact, or
equivalently just left exact. If P is a prime ideal of R, denote by
KP the quotient field of the integral domain R/P.
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I begin with some examples. Throughout let k be an
algebraically closed field of characteristic 0 and set R = k[t ]. First
let S = R[x ]/(x − t) (Example 1, p. 159). Here S ∼= R, so clearly
S/MS ∼= R/M for any M, so the fibers are as uniform as one could
ask. Notice that S is flat as an R-module, since S ⊗R N = N for any
R-module N. Next let S = R[x ]/(x2 − t) (Example 2). Here the fiber
over a point P = (t − a) with a ∈ k∗ is k[x ]/(x2 − a) ∼= k ⊕ k , while
the fiber over (t) is k[x ]/(x2). Finally, the fiber over 0 is
k(t)[x ]/(x2 − t), a field of degree 2 over the residue field K0 = k(t).
Thus for each prime P the fiber over P is a vector space of
dimension 2 over the residue field KP . Here S is a free R-module
with basis (1, x), so again S is flat.
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Next set S = R[x ]/(tx − 1) ∼= R[t−1] (Example 3, p. 160); clearly we
are localizing the algebra S of Example 1. It is not difficult to
check that any localization of a ring is flat as a module over the
ring, so S is again flat. The fiber over a prime P is KP ,
corresponding to one point, except when P = (t), in which case
this fiber is the 0 ring, corresponding to the empty variety. In this
case S is not a free R-module; accordingly there is some
variation in the fibers, but this variation is not too drastic. Finally,
let S = R[x ]/(tx − t). Here S is not flat over R since it has t-torsion; I
will rule out this behavior for flat modules shortly. If the prime
ideal P does not contain t , then t is a unit in KP , whence
KP ⊗R S ∼= KP , corresponding to a point; but if P = (t), then
tx − t = 0 in KP ⊗R R[x ] and KP ⊗R S = k[x ], corresponding to a
line. In general, it turns out that S is never flat over R if the
dimension of one fiber is greater than that of nearby fibers.
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I mentioned the Tor functor briefly in the fall; let me now give a
slightly more systematic account, emphasizing the parallels
between this functor and the Ext functor. To begin with, for any
R-modules M,N the R-module TorRn(M,N) is the nth higher
derived functor of the functor · ⊗R N, so that TorR0 (M,N) = M ⊗r N,
while in general TorRn(M,N) is computed by letting
. . . → F1 → F0 → M be a free resolution of M and taking the
homology of the chain complex . . . Fi+1 ⊗ N → Fi ⊗ N → . . ., so
that TorRn(M,N) is the kernel of the map Fi ⊗R N → Fi−1 ⊗R N
modulo the image of the map Fi+1 ⊗R N → Fi ⊗R N. As with Ext
groups, this homology is independent of the choice of the
resolution (Fi); it could also be computed by resolving N rather
than M. The functor TorRn(·,N) =TorRn(N, ·) is covariant.
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If M or N is free over R, then TorRn(M,N) = 0 for n > 0; if M and N
are finitely generated and R is Noetherian, then TorRn(M,N) is
finitely generated. Given a short exact sequence
0 → M′ → M → M′′ → 0 of R-modules and another R-module N,
one gets a long exact sequence · · ·
TorRi (M

′,N) →TorRi (M,N) →TorRi (M
′′,N) → · · · → M′ ⊗R N →

M ⊗R N → M′′ ⊗R N → 0; in particular, M is flat if and only if
TorRn(M,N) = 0 for n > 0. As a simple example of an explicit
computation of Tor, let x ∈ R be a non-zero-divisor and let M be
an R-module. I will compute TorRI (R/(x),M). The short exact
sequence 0 → R → R → R/(x) → 0, in which the second map is
multiplication by x , is a free resolution of R/(x); tensoring with M
we get TorR0 (R/(x),M) = M/xM,
TorR1 (R/(x),M) = xM = {m ∈ M : xm = 0}, TorRi (R/(x),M) = 0 for
i > 1. In what follows I will often omit the subscript R on tensor
product of R-modules.
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A simple application of the long exact sequence for Tor is the
following. It is the analogue for Tor of the Baer Criterion seen in
the fall for injectivity.

Proposition 6.1, p. 162
Let R be a ring, M an R-module, and I an ideal of R. The
multiplication map I ⊗R M → M is an injection if and only if
TorR1 (R/I,M) = 0. The module M is flat if and only if this condition is
satisfied for every finitely generated ideal I.
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Proof.
The short exact sequence 0 → I → R → R/I → 0 gives rise to a
long exact sequence including
TorR1 (R,M) →TorR1 (R/I,M) → I ⊗ M → R ⊗ M. The leftmost term is 0,
by above results, the rightmost term is M,and the rightmost map
is multiplication, so the first assertion follows. If the hypothesis in
the second assertion holds, then the map I′ ⊗ M → M is an
injection for any ideal I′, since the definition of the tensor product
guarantees that any element of I′ ⊗ M is a finite sum of tensors
involving only finitely many elements of I′. Similarly, the statement
that x∈ N′ ⊗ M lies n the kernel of the map from this module to
N ⊗ M involves only finitely many elements of N, so we are
reduced to the case where N is finitely generated.
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Proof.
In this case we have a chain of submodules
N′ = N0 ⊂ N1 ⊂ · · · ⊂ Np = N, where each quotient Ni/Ni−1 is
singly generated and so isomorphic to a quotient R/I. Repeated
application of the hypothesis and the first assertion shows that
the map Ni ⊗ M → Ni+1 ⊗ M is an injection for all i, and flatness of
M follows.

Next I give two simple consequences, again analogous to
corresponding results for injective modules.

Corollary 6.2, p. 163

Let k be a field and R the ring k[t ]/(t2). If M is an R-module then
M is flat if and only if multiplication by t induces an isomorphism
from M/tM to tM.

This follows at once from the last two results, since (t) is the only
nonzero ideal of R.
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Corollary 6.3, p. 164
If a ∈ R is a non-zero-divisor and M is flat over R, then a is a
non-zero-divisor on M. If R is a PID, then M is flat over R if and only
if it is torsion-free.

The first assertion follows at once from Proposition 6.1 applied to
the principal ideal generated by a. The second one follows from
the same proposition and the above computation of
TorR1 (R/(a),M).
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The last result can be improved to a general criterion for flatness.
To do this I need a criterion for a combination of tensors to equal
0 in a tensor product.

Lemma 6.4, p. 164
Let M,N be R-modules and suppose that N is generated by a set
{ni} of elements. Every element of M ⊗ N may be written as a
finite sum

∑
i mi ⊗ ni in M ⊗N. Such an expression is 0 if and only if

there are elements m′
j ∈ M and aij ∈ R such that∑

j aijm′
j = mi ∈ M for all i while

∑
i aijni = 0 ∈ N for all j.
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Proof.
If elements m′

j and aij exist with this property, then
∑

i mi ⊗ ni = 0,
as one sees by moving the aij past the tensor product. To prove
the converse, suppose first that the ni are a free basis of N. You
saw in the fall that

∑
i mi ⊗ ni = 0 if and only if all mi = 0, so that

we can take aij = 0 for all i, j. In general, let G be a free
R-module on a set {gi} of generators in bijection to {ni} and let F
be a free module surjecting onto the kernel of the surjection
from G to N. Right exactness of the tensor product shows that
the sequence M ⊗ F → M ⊗ G → M ⊗ N → 0 is exact; it sends∑

mi ⊗ gi to 0. Then
∑

i mi ⊗ gi =
∑

j m′
j ⊗ yj for some m′

j ∈ M with
the yj lying in the image of F , so that yj → 0 in N. Writing each yj
as a combination

∑
i aijgi of basis elements and using the

special case above on the difference
0 =

∑
i mi ⊗ gi −

∑
j m′

j ⊗
∑

i aijgi , we get that mi =
∑

j aijm′
j and

yj =
∑

i aijgi goes to
∑

i aijni = 0, as required.
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