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Following section 1.7 of Hartshorne, I will study how a projective
variety intersects a hypersurface in Pn not containing it,
attaching a suitable degree to the variety and multiplicities to
the irreducible components of the intersection.
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I begin by studying the dimension of intersections of subvarieties
of affine space. Before I do this I need a simple construction to
produce new varieties from old ones. Given two affine algebraic
sets X ⊂ An,Y ⊂ Am, their Cartesian product X × Y ⊂ An+m is an
affine algebraic set in an obvious way. Its topology is the one
induced from An+m and is not generally the same as the product
topology. It is an easy exercise to show that if X and Y are
irreducible, then so is V = X × Y ; by looking at chains of
subvarieties of V , one checks that dimX × Y = dimX + dimY .
More generally, the product of two schemes has a scheme
structure. If X ⊂ Pn,Y ⊂ Pm, then one cannot however embed
X × Y in Pn+m, due to the vagaries of homogeneous coordinates.
Instead, if [x0, . . . , xn] ∈ Pn, [y0 . . . , ym] ∈ Pm, then
[x0y0, . . . , xny0, x0y1, . . . , xny1, . . . , xnym] is well defined as a point in
Pn+m+nm. In this way we realize X × Y as a subvariety of Pn+m+nm.
This is called the Segre embedding. More generally, the product
of two projective varieties is again a projective variety.
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Then we have

Affine Dimension Theorem. p. 48, Hartshorne
Let Y , Z be varieties of dimensions r , s in An. Then every
irreducible component W of Y ∩Z has dimension at least r + s−n.
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Proof.
First suppose Z is a hypersurface, defined by an equation f = 0. If
Y ⊆ Z , there is nothing to prove; otherwise the result follows from
the corollary to Krull’s theorem observed in the lecture on April
23. In general, the product Y × Z ⊂ A2n has dimension r + s. The
diagonal ∆ = {(P,P) : P ∈ An} is also a subvariety of A2n

isomorphic to An. In the isomorphism Y ∩ Z corresponds to
Y × X ∩∆. In this way we reduce the result to the varieties Y × Z
and ∆. But ∆ is an intersection of n hyperplanes, each defined
by equating two coordinates. Applying Krull’s Theorem n times,
we get the result.

Given a fixed component of Y ∩ Z , some of the hyperplanes in
the preceding proof will contain it and others will not; this is why
(in contrast to Krull’s Theorem) not all components need have
the same dimension.
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For projective varieties we get more uniform behavior. This is

Projective Dimension Theorem, p. 48
If Y , Z are subvarieties of Pn of dimensions r and s, then all
irreducible components of Y ∩ Z have dimension at least
r + s − n. Moreover, if r + s − n ≥ 0, then Y ∩ Z is nonempty.

The first statement follows from the previous theorem, since Pn is
covered by affine open sets. To prove the second statement,
replace Y , Z by their affine cones C(Y ),C(Z) (see the lecture on
April 16), which have the respective dimensions r + 1 and s + 1. If
r + s ≥ n, then C(Y ) and C(Z) must intersect in at least a line,
whence Y ∩ Z ̸= ∅.
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Now I need a small refinement of earlier results on associated
prime ideals of finitely generated modules over a Noetherian
ring; see the lecture on April 11. I showed then that every finitely
generated module M over a Noetherian ring R admits a finite
chain of submodules M0 = 0 ⊂ M1 ⊂ · · · ⊂ Mn = M such that
each quotient Mi/Mi1

∼= R/Pi for some prime ideal Pi . The
refinement I need now is that in any two such chains, the
number nP of quotients isomorphic to R/P for a fixed prime ideal
P minimal among the Pi is the same; in fact it equals the length
of the localization MP of M at P as a module over RP . This
number nP is called the multiplicity of M at P and is denoted
µP(M). This is easily checked.
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A further refinement needed in the projective setting is

Lemma, p. 50
With notation as above, if both R and M are graded, then we
can choose the submodules Mi in the chain to be graded and
each quotient Mi/Mi−1 takes the form (R/Pi)(ℓi) for some
homogeneous prime ideal Pi , where (R/Pi)(ℓi) denotes the
graded ring R/Pi with the degrees of all graded components
shifted down by ℓi ∈ Z.

This is proved as for the previous result, taking account of the
degrees of the elements mi whose annihilators are the prime
ideals Pi arising in the statement.
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Recall also from the lecture on April 18 the Hilbert polynomial
PM = ℓ(Mn), the length of Mn as a module over R0 (which is a
polynomial in n for sufficiently large n), where M = ⊕∞

n=0Mn is a
finitely generated graded module over a graded Noetherian
ring R = ⊕∞

n=0 and the 0-graded piece R0 is Artinian. If this
polynomial has degree r , then its coefficients are integers
divided by r! (Note that the degree of this polynomial is one less
than the integer d(M) attached to M at the beginning of the
lecture on April 18. This shift works well in the projective setting,
where the dimension of a projective variety V with
corresponding ideal I ⊂ k[x0, . . . , xn] is one less than the
dimension of k[x0, . . . , xn]/I.) We define the degree of M to be r!
times its leading coefficient (p. 52). If Y ⊂ Pn is a projective
variety, then we define its degree deg Y to be the degree of the
homogeneous coordinate ring k[Y ], regarding the latter as a
graded module over the polynomial ring k[x0, . . . , xn]. The integer
r arising in the definition of degree is of course just the dimension
of Y as a projective variety.
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Proposition, p. 52
1 If Y is nonempty, then its degree is a positive integer.
2 If Y = Y1 ∪ Y2, where Y1 and Y2 has the same dimension r and

Y1 ∩ Y2 has lesser dimension, then deg Y =deg Y1+deg Y2.
3 deg Pn = 1.
4 If H is a hypersurface defined by a homogeneous

polynomial of degree d, then deg H = d.
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Proof.
If Y is nonempty, then the Hilbert polynomial of its coordinate
ring is a nonzero polynomial of degree r = dimY . The degree of
k[Y ] is then an integer, by above remarks, and is positive since it
equals the dimension of a graded component up to a scalar.
For the second assertion, we have that I, the ideal of Y , is the
intersection I1 ∩ I2 of the ideals I1, I2 of Y1,Y2. We have an exact
sequence 0 → S/I → S/I1 ⊕ S/I2 → S/(I1 + I2) → 0 for a suitable
polynomial ring S and the zero set of I1 + I2 has smaller dimension
than r . Hence the leading coefficient of the Hilbert polynomial
of S/I is the sum of the leading coefficients of the Hilbert
polynomials of S/I1 and S/I2 and the result follows.
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Proof.
For the third assertion, the coordinate ring of Pn is S = k[x0, . . . , xn],
whose ℓth graded component has dimension

(
ℓ+n

n

)
; the leading

coefficient of this polynomial is 1/n!. Finally, if f ∈ S has degree d,
then the ℓth graded piece of the coordinate ring of the variety
defined by f has dimension

(
ℓ+n

n

)
−
(
ℓ−d+n

n

)
for sufficiently large ℓ;

the leading coefficient of this polynomial is d/(n − 1)!
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Now we come to the main result about the intersection of a
projective variety Y ⊂ Pn with a hypersurface H not containing it.
We know that all components of this intersection have
dimension one less than that of the variety; counting these
components with the appropriate multiplicities, we get a uniform
answer depending only on Y and H, and in a nice way. More
precisely, let Z1, . . . , Zs be the components of Y ∩ H. and let Pj be
the homogeneous prime ideal of Zi . Define the intersection
multiplicity i(Y ,H; Zj) of Y and H along Zj to be the multiplicity
µPj

(S/(IY + IH), where S as usual denotes k[x1, . . . , xn] and Iy , IH are
the respective ideals of Y and H. The module M = S/(IY + IH) has
annihilator IY + IH , the ideal of Y ∩ H and Pj is a minimal prime
ideal of M.
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Intersection Theorem, p. 53
With notation as above, we have

s∑
j=1

i(Y ,H; Zj) · deg Zj = deg (Y )(deg H).
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Proof.
Let H be defined by the homogeneous polynomial f of degree
d. We have an exact sequence of graded S-modules
0 → (S/IY )(−d) → S/IY → M → 0, where the second map is
multiplication by f . Taking Hilbert polynomials, we get
PM(z) = PY (z)− PY (z − d). Now compare leading coefficients of
both sides of this equation. If Y has dimension r and degree e,
then PY (z) = (e/r!)z r plus lower order terms, whence on the right
we get
(e/r!)z r + . . .− [(e/r!)(z − d)r + . . .] = (de/(r − 1)!)z r−1 + . . .

.
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Proof.
But now the graded module M admits a chain of submodules Mi
as in the above lemma, where the quotients Mi/Mi−1 take the
form (S/Qi)(ℓi). The Hilbert polynomial of M is then the sum of the
Hilbert polynomials of the (S/Qi)(ℓi). The degree shift by ℓi does
not affect the leading coefficient of a Hilbert polynomial, and
we can ignore that Qi with the Hilbert polynomial of S/Qi having
degree less than r − 1. The upshot is that the Hilbert polynomials
contributing to the leading term are exactly those of the S/Pi
above, each occurring i(Y ,H; Zi) times with a contribution of
deg Zi each time. Comparing the two expressions for the
leading coefficient, we get the desired result.
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I conclude with

Corollary (Bézout’s Theorem, p. 54)

Let Y , Z be distinct curves in P2, corresponding to homogeneous
polynomials of degrees d,e. Set Y ∩ Z = {P1, . . . ,Ps}, where the Pi
are points. Then we have

∑
j i(Y , Z ;Pj) = de.

This follows because the degree of a point is easily calculated to
be 1.

Lecture 5-14: Intersections in projective space May 14, 2025 17 / 1


