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Today I digress to give a tool important in the study of general
commutative rings (beyond polynomial rings and their
quotients).
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Let R be a commutative ring. There is an important
generalization of the notion of prime ideal. It corresponds
roughly to being a power of a prime ideal.
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Definition, p. 681
A proper ideal Q of R is called primary if whenever ab ∈ Q and
a /∈ Q, then bn ∈ Q for some positive integer n. Equivalently, all
zero divisors in the quotient ring R/Q are nilpotent.

Recall that the radical
√

I of an ideal I consists of all x ∈ R with
xn ∈ I for some n. It is an ideal containing I; I showed earlier that√

I is the intersection of all prime ideals containing I.
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Now we have

Proposition 19, p. 682
1 Prime ideals are primary.
2 If Q is primary then P =

√
Q is prime and is the unique

smallest prime ideal containing Q (we say that Q is
P-primary or belongs to P.

3 If Q is an ideal whose radical M is a maximal ideal, then Q is
M-primary.

4 If M is a maximal ideal and Q satisfies Mn ⊆ Q ⊆ M for some
M, then Q is M-primary.

Lecture 4-9: Primary decomposition April 9, 2025 5 / 1



The first statement follows at once from the definition. For the
second, if ab ∈

√
Q, then (ab)m ∈ Q for some m, whence either

a ∈
√

Q or b ∈
√

Q by definition; since
√

Q is the intersection of
the prime ideals containing Q, it is the unique smallest such
ideal. To prove the next statement, pass to the quotient R/Q; it
suffices to show that every zero divisor in this ring is nilpotent. Thus
given a ring with only one prime and thus only one maximal
ideal we must show that every zero divisor is nilpotent. The
intersection of the prime ideals of such ring is its nilradical, that is,
the radical of the 0 ideal; given a zero divisor d in it, it is not a
unit, so lies in a maximal ideal, so must be nilpotent, as desired.
The last statement follows from the previous ones.
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The ring-theoretic analogue of writing an algebraic variety as a
finite union of irreducible varieties is then the assertion that every
ideal has a primary decomposition in the following sense.

Definition, p. 683
An ideal I of R has a primary decomposition if it is the
intersection ∩Qi of finitely many primary ideals Qi ; this
decomposition is called minimal if no Qi contains the
intersection of the others and the Qi have pairwise distinct
radicals Pi . The Pi are called the associated primes of I; those Pi
not containing any Pj with j ̸= i are also called minimal (or
isolated), as are the corresponding ideals Qi in the
decomposition, The other primes Pj are called embedded.
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The main result is then

Theorem 21, p. 684
Every ideal I in a Noetherian ring R admits a primary
decomposition.

I will prove this by showing that every ideal is a finite intersection
of irreducible ideals; that is, ideals I such that if I = J ∩ K for ideals
J,K , then I = J or I = K , and that every irreducible ideal is
primary.
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Proposition 20, p. 684
Every irreducible ideal in a Noetherian ring is primary. Every ideal
in such a ring is a finite intersection of irreducible ones.
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Proof.
First let Q be irreducible and let ab ∈ Q,b /∈ Q. The set of
elements x ∈ R with anx ∈ Q is easily seen to be an ideal An of R;
since A1 ⊆ A2 ⊆ . . . we must have An = An+1 = . . . for some n > 0.
The ideals I = (an) + Q and J = (b) + Q both contain Q; if
y ∈ I ∩ J, then y = anz + q = b + q′ for some q,q′ ∈ Q; since
ab ∈ Q we get ay ∈ Q,an+1z = ay − aq ∈ Q, z ∈ An+1 = An. But
then anz, y ∈ Q and I ∩ J = Q. Since J ̸= Q, we must have
I = Q,an ∈ Q, and Q is primary. Next look at the collection S of
ideals of R that are not finite intersections of irreducible ideals; if
this is not empty then it has a maximal element I, which must be
reducible and thus the intersection J ∩ K of two properly larger
ideals. Each of these must be a finite intersection of irreducible
ideals, whence I is also such, a contradiction.
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Since it is easy to check that a finite intersection ∩Ii of P-primary
ideals is again P-primary, for any prime ideal P, we may assume
that the radicals of the ideals Qi in a primary decomposition ∩Qi
of I are distinct. We can then omit superfluous terms in the
intersection to guarantee that no Qi contains the intersection of
the others.

Although primary decompositions are not unique, as we will
soon see, there are two uniqueness results.

Theorem 21 again
Given two minimal primary decompositions ∩m

i=1Qi = ∩n
j=1Q′

i of
the same ideal I, the sets {Pi}, {P ′

i } of radicals of the Qi and Q′
i

coincide.
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For any x ∈ R denote by (I : x) the set of y ∈ R with xy ∈ I. This is
an ideal of R; denote its radical by

√
(I : x). Then for any x ∈ R we

have (I : x) = (∩Qi : x) = ∩(Qi : x), whence√
(I : x) = ∩

√
(Qi : x) = ∩Pi . If

√
(I : x) is prime then it must contain

one of the Pi and hence coincide with it. Conversely, for each i
there exists xi /∈ Qi , xi ∈ ∩j ̸=iQj by minimality, whence√

(Qi : x) = Pi . Hence the Pi and P ′
i are exactly the prime ideals

of the form
√
(I : x) for some x ∈ R. It also easily follows that the

minimal prime ideals P containing I are the minimal primes Pi in
any primary decomposition ∩Qi of I with

√
Qi = Pi .
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The other uniqueness result is

Theorem; Corollary 44, p. 717
Given two minimal primary decompositions ∩Qi = ∩Q′

i as above,
the minimal primary components among the Qi and Q′

i
coincide.
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The proof of this result uses localization in a crucial way. One first
shows that if S ⊂ R is multiplicatively closed and Q is P-primary,
then either S intersects with P and S−1Q = S−1R or S ∩ P = ∅ and
S−1Q is S−1-primary with contraction Q to R. Then it follows that
given an ideal I with primary decomposition ∩n

i=1Qi with
√

Qi = Pi
and a multiplicatively closed set S, suppose that the Qi are
numbered so that S ∩ Pi = ∅ for 1 ≤ i ≤ t while S ∩ Pi ̸= ∅ for i > t ;
then S−1I = ∩t

i=1S−1Qi is a minimal primary decomposition of S−1I
and S−1Qi is S−1Pi-primary for 1 ≤ i ≤ t . Letting S be the
complement R − P of a minimal prime P, then S ∩ Pi = ∅ only for
P = Pi , so the contraction of the localization of I at S is exactly
the primary component Q of I belonging to P. Since the primes
Pi ,P ′

i corresponding to the two decomposition coincide, so too
do the minimal primary components.
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