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Picking up from where I left off last time, I continue to continue to
study arbitrary commutative rings rather than quotients of
polynomial rings over fields, developing a basic technique that
will prove quite useful for the quotients as well. In particular I use
it to show that there is a finite-to-one covering map from any
algebraic set V of dimension d to affine space Ad .
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Let R be a commutative ring. You know that there is a bijection
between ideals of a quotient R/I and ideals of R containing I.
What if one wanted to study ideals of R contained in I instead?
We will see that there is indeed a way to focus attention at least
on prime ideals contained in I. To do this, I generalize the
construction of the field of quotients of an integral domain. Let D
be a multiplicatively closed subset of R, so that (by definition)
1 ∈ D and ab ∈ D whenever a,b ∈ D.
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Definition of localization D−1R, p. 707

The ring D−1R, the localization of R by D, consists of all
equivalence classes of ordered pairs (d, r) ∈ D × R, subject to
the relation (d, r) ∼ (e, s) if there is x ∈ D with x(er − ds) = 0. The
equivalence class of (d, r) is denoted r

d . We make D−1R into a
ring by the usual rules for adding and multiplying fractions:
r
d + s

e = re+ds
de , r

e
s
d = rs

de . There is a natural map R → D−1R sending
r to r

1 .

In constructing D−1R we are adjoining multiplicative inverses of
the elements of D to R. If R is an integral domain and D is the
nonzero elements of R, then the construction reduces to that of
the field of quotients of R.
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One checks immediately that the relation ∼ is indeed reflexive,
symmetric, and transitive; note that the x appearing in the
definition of ∼ is crucial to proving its transitivity. One also checks
that the ring operations are well defined on equivalence classes.
The map from R to D−1R is injective if and only if D contains no
zero divisors; in general its kernel is the set of r ∈ R for which there
is d ∈ D with dr = 0.
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For our purposes the most important example of this construction
occurs when D is the complement of a prime ideal P of R; then
primeness of P guarantees that D is multiplicatively closed. In this
case we denote D−1R by RP and call it the localization of R at P.
Another important example has D = {f n : n ∈ N}, the powers of a
non-nilpotent element f of R; here D−1R is denoted Rf .

Lecture 4-7: Localization of commutative rings April 7, 2025 6 / 1



Ideals in a localization D−1R are closely related to ideals in R.
More precisely, we have

Proposition, p. 709

For any ideal of J of D−1R we have J = Jce; in particular,
every ideal of D−1R is the extension of an ideal of R and
distinct ideals in D−1R have distinct contractions in R.
For any ideal I of R we have
Iec = {r ∈ R : dr ∈ I for some d ∈ D}; also Ie = D−1R if and
only if I intersects D.
Extension and contraction give order-preserving bijections
between prime ideals of R not intersecting D and prime
ideals of D−1R.
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Proof.
We already know that Jce ⊆ J; conversely, if a

d ∈ J, then
a = d a

d ∈ J, so a ∈ Jc, showing that Jce = J. If I is an ideal of
R, r ∈ R and d ∈ D has dr = a ∈ I then r

1 = a
d ∈ Ie, so r ∈ Iec.

Conversely, if r ∈ Iec, then r
1 = a

d for some a ∈ I,d ∈ D, so that
x(dr − a) = 0, xdr = xa ∈ I for some x ∈ D, whence the second
assertion holds. In particular, we have Ie = D−1R if and only if
1 ∈ Iec, so that I intersects D. If Q is prime in D−1R then we have
already observed that its contraction Qc is prime in R.
Conversely, if P is prime in R and a

d1

b
d2

∈ Q = Pe, then ab
d1d2

= c
d for

some c ∈ P,d ∈ D, whence x(dab − d1d2c) = 0 for some x ∈ D,
forcing xdab ∈ P and then ab ∈ P since P is prime and disjoint
from D. Then either a ∈ P or b ∈ P, forcing a

d1
∈ Q or b

d2
∈ Q, as

desired. Since Pec = P we get the bijection of the third
assertion.
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Thus I have achieved the goal set out at the beginning: if P is
prime in R, then the localization RP is such that its prime ideals
correspond bijectively to prime ideals of R lying in P. In
particular, RP has a unique maximal ideal, namely the extension
Pe = PRP . We call a ring R with a unique maximal ideal M local
(p. 717). In this case, M consists precisely of the nonunits in R,
since any nonunit x lies in a proper principal ideal (x), which can
be enlarged to a maximal ideal necessarily coinciding with M.
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Now I can complete the proof of Corollary 27 (p. 695), as
promised last time.

Corollary 50, p. 720
Given a ring extension R ⊆ S with S integral over R and P, a prime
ideal of R, there is a prime ideal Q of S with Qc = Q ∩ R = P.

Let D be the complement of P in R. It is easy to check that D−1S
is integral over D−1R = RP ; let m be a maximal ideal of D−1S (any
ring has at least one maximal ideal, as we observed last term).
We saw last time that the contraction mc = m ∩ RP of m is
maximal in RP and thus equal to PRP . Taking the contraction
m∩ S of m in S, we get a prime ideal Q with Q ∩ R = P, as desired.
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Now let k be an algebraically closed field and V ⊂ An an
algebraic set. We have seen by Noether normalization that the
coordinate ring k[V ] is a finitely generated integral extension of
Pd = k[x1, . . . , xd ], where d = dimV , whence there is a morphism
π from V to affine d-space Ad . Since points of either V or Ad

correspond bijectively to maximal ideals of their coordinate
rings, we see from the aforementioned Corollary 27 that this
morphism is surjective and has finite fibers. As mentioned last
time, however, It is not a topological covering map, however,
since the fibers need not have the same size in general. The
fibers of the map from V to Ad do have constant size on a Zariski
open subset of Ad , but not on the entire space.
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Now let V be a variety, v a point of V . We have the maximal
ideal M = Mv of the coordinate ring k[V ] consisting of all
functions vanishing at v . The localization k[V ]M of k[V ] at M may
be viewed as a subring of the function field k(V ); it consists of all
quotients f

g of polynomials f ,g ∈ k[V ] with g(v) ̸= 0. Such a
quotient is called regular at v ; the ring or all such quotients is
called the local ring of V at v and is denoted Ov ,V (p. 722).
More generally, any quotient of polynomials f

g defined on an
open subset of V (but not necessarily on all of V ) and equal in
some neighborhood of a point v at which it is defined to a
function in Ov ,V is called regular on V ; the ring of all such is
denoted OV . The collection of regular functions defined at all
points of an open subset U of V is denoted OU,V .
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Example

Let V be the zero locus of xz − yw in A4. This polynomial is easily
seen to be irreducible in k[x , y , z,w ]; since the latter ring is a UFD,
the principal ideal (xy − zw) is prime, so that V is a variety. The
function f = x

y is defined at all points (x , y , z,w) ∈ V with y ̸= 0
and is regular at such points; since x

y = w
z at any point in V at

which both quotients are defined, we have f = w
z at any point in

V where z ̸= 0. Thus f ∈ OV ; the domain D of definition of f
consists of all points (x , y , z,w) ∈ V at which at least one of y , z is
not 0. It is easy to check that there is no single quotient p

q of
polynomials which equals f at all points of D. See p. 721.

Lecture 4-7: Localization of commutative rings April 7, 2025 13 / 1



It is not difficult to see that if R is an integral domain with field of
fractions K , then the intersection ∩MRM of all localizations of R at
maximal ideals M, regarded as a subring of K , is just R
(Proposition 48, p. 720). Indeed, suppose that a ∈ K lies in the
intersection. Then Ia = {d ∈ R : da ∈ R} is an ideal of R; if it is
proper then it lies in a maximal ideal M. Writing a = r

d for some
r ∈ R,d /∈ M we then get d ∈ Ia, a contradiction; so Ia = R,a ∈ R,
as claimed. As a consequence, the ring OV ,V

∼= R (Proposition
51, p. 722).
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