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As previously promised, I prove the Nullstellensatz, using the
Noether Normalization Lemma.
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Noether Normalization Lemma; Theorem 30, p. 699
Let k be a field and suppose that A = k[r1, . . . , rn] is a finitely
generated k-algebra. Then for some m ≤ n there are elements
y1 . . . , ym algebraically independent over k such that A is integral
and finitely generated as a module over the k-subalgebra
k[y1, . . . , ym].
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Proof.
By induction on n. If the ri are already algebraically
independent then there is nothing to prove. Otherwise there is a
nonzero p in the polynomial ring Pn = k[x1, . . . , xn], say of degree
d, with f (r1, . . . , rn) = 0. If n > 1, then set αi = (1 + d)i for
1 ≤ i ≤ n − 1 and make a change of variables, defining
yi = xi − xαi

n for these i; similarly set si = ri − rαi
n . Rewrite p as a

polynomial q in y1, . . . , yn−1, xn. Each monomial term t of p then
contributes a nonzero constant multiple of some power xet

n of xn
to q and the construction guarantees that the exponents et are
distinct for distinct terms t . Thus q may be regarded as a monic
polynomial in xn with coefficients in the polynomial ring
kx1, . . . , xn−1]. Accordingly, rn is integral over the subalgebra A′ of
A generated by k and s1, . . . , sn−1. The inductive hypothesis then
guarantees that A′ takes the desired form; since A is integral and
finitely generated over A′ it does too.
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To apply this result in the context of the Nullstellensatz we need a
simple lemma, valid in a wider context.

Proposition, p. 694
If A and B are integral domains with B integral over A (that is,
every element of B integral over A), then A is a field if and only if
B is.

If A is a field and b ∈ B with b ̸= 0 satisfies bn +
n−1∑
i=0

aibi = 0, then

by cancelling a suitable power of b we may assume that a0 ̸= 0,

whence b has the multiplicative inverse −a−1
0 (bn−1 +

n−1∑
i=1

aibi−1).

Conversely, if B is a field, then any a ∈ A with a ̸= 0 has a
multiplicative inverse a−1 in B, which must be integral over A, so

that a−n +
n−1∑
i=0

cia−i = 0 for some ci ∈ A. Multiplying by an−1, we

see that a−1 ∈ A, as desired.
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It follows at once from this lemma and the preceding one that a
finitely generated k-algebra A that is a field is a finite extension
of k , since Noether normalization implies that A is integral over a
polynomial ring k[y1, . . . , ym], which is a field if and only if m = 0.
Then we get

Weak Nullstellensatz; Theorem 31, p. 700
If k is algebraically closed and I is a proper ideal in a polynomial
ring Pn = k[x1, . . . , xn] then V(I) ̸= ∅.
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Proof.
Enlarge I to a maximal ideal M of Pn. Then the coordinate ring
Pn/M is a finitely generated k-algebra that is a field, whence by
algebraic closure it must be isomorphic to k . If the surjection
from Pn to k sends the variable xi to ai ∈ k , then Z(M) is the point
(a1, . . . ,an) ∈ kn, whence Z(M) and Z(I) are nonempty.
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Finally we are ready to prove the full Nullstellensatz, sometimes
called the “strong Nullstellensatz” in this context..

Nullstellensatz; Theorem 32, p. 700
If k is algebraically closed and I ⊂ Pn is a proper ideal, then
I(V(I)) =

√
I. In particular the maps S → I(S), I → Z(I) define

inverse inclusion-reversing bijections between Zariski closed
subsets of kn and radical ideals in Pn.
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Proof.

Clearly
√

I ⊆ I(Z(I)), so it remains to prove the reverse inclusion.
Let f1, . . . , fm be a finite set of generators of I and let g ∈ I(Z(I)).
Introduce a new variable xn+1 and consider the ideal I′

generated by f1, . . . , fm and xn+1g − 1 in Pn+1. At any point of
An+1 where the fi vanish so too does g, whence xn+1g − 1 does
not vanish. Hence Z(I′) = ∅, whence I′ must be all of Pn+1. Now
we have an equation 1 = a1f1 + · · ·+ amfm + am+1(xn+1g − 1) for
some ai ∈ Pn+1. Setting y = 1

xn+1
and multiplying by a high power

of y we get yN = c1f1 + · · ·+ cmfm + cm+1(g − y) for some
ci ∈ k[x1, . . . , xn, y ]. Substituting g for y in this last equation shows
that gN ∈ I = (f1, . . . , fm), so that g ∈

√
I, as desired.
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A side benefit of Noether normalization is that it gives us a way to
define and compute the dimension of an algebraic set V ,
whether or not this set is a variety: writing the coordinate ring
k[V ] as a finitely generated integral extension of a polynomial
ring k[y1, . . . , yd ], define the dimension of V to be d. This agrees
with the earlier definition if V is irreducible, since then the
quotient field of k[V ] is a finite extension of the rational function
field in d variables over k , so has transcendence degree d. But
now it turns out that there is more that we can say about the
morphism V → Ad giving rise to the inclusion k[y1, . . . , yd ] ⊂ k[V ].
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As an example of this, consider again the subvariety V of say C2

defined by the equation x3 − y2 = 0. We have seen that the
coordinate ring of V may be identified with the subring
R = C[t2, t3] of S = C[t ]; the inclusion of R into S corresponds to
the morphism t 7→ (t2, t3) of A1(= C) to V , which is bijective. But
we also have the maps S → R sending t to t2, or t to t3; these
correspond to the projections π1, π2 from V onto its first and
second coordinates. These maps are generically two-to-one
and three-to one, respectively, though in both cases there is only
one preimage of 0, namely the origin (0, 0). Thus these maps are
not covering maps of topological spaces; we call them ramified
finite covers, since not all fibers have the same size.

Lecture 4-4: Noether normalization and the proof of the NullstellensatzApril 4, 2025 11 / 1



We now digress to study the relationship between ideals of a ring
R and those of a ring S containing R. We call the ring S an
extension of R.If I is an ideal of R then it generates an ideal Ie = IS
of S, called the extension of I; similarly, given an ideal J of S, its
contraction Jc = J ∩ R is an ideal of R. Clearly any ideal I of R lies
in the contraction Iec of its extension to S and any ideal J of S
contains the extension Jce of its contraction to R, but in general
we do not get equality in either case. The contraction P = Qc of
a prime ideal Q in S is prime in R, since the quotient R/P, as a
subring of S/Q, cannot have zero divisors if S/Q does not. On the
other hand, the contraction of a maximal ideal in S need not be
maximal in R; nor is it true that every prime ideal of R, or even
every maximal ideal, is the contraction of some ideal in S.
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If S is integral over R, however, then we have more control over
the situation. Given a prime ideal P of R that is the contraction
Qc of a prime ideal Q of S, we know that P is maximal if and only
if Q is maximal by a previous result, since S/Q is integral over R/P
and both are integral domains. If in addition S is finitely
generated as a ring over R, say by s1, . . . , sm, then given any
homomorphism π from R with kernel P to a field K there are only
finitely many ways to extend π to S, since each generator must
go to a root of a monic polynomial with specified coefficients. It
follows that there are only finitely many ideals Q whose
contraction is a fixed maximal ideal of P of R, all of them
maximal (Corollary 27, p. 695). I will show next time that there is
always at least one such ideal Q. The consequence for
algebraic geometry is then that if f : V → W is a morphism of
algebraic varieties such that the algebra homomorphism
f ∗ : k[W ] → k[V ] is injective and realizes k[V ] as finitely generated
and integral over the image of k[W ] in it, then f is surjective.
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