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As previously promised, | prove the Nullstellensatz, using the
Noether Normalization Lemmnma.
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Noether Normalization Lemma; Theorem 30, p. 699

Let k be a field and suppose that A = k[r, ..., ] is a finitely
generated k-algebra. Then for some m < n there are elements
Y1 ..., Ym algebraically independent over k such that A is integral
and finitely generated as a module over the k-subalgebra

k[)/'l;-- 7ym]
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By induction on n. If the r; are already algebraically
independent then there is nothing to prove. Otherwise there is a
nonzero p in the polynomial ring P, = K[X, ..., Xn]. sy of degree
d, with f(ry,...,rm) =0.1f n > 1,then set a; = (1 + d)' for

1 <i< n-1and make a change of variables, defining

yi = x; — x5, for these i; similarly set s; = r; — ry’. Rewrite p as a
polynomial gin yy, ..., Vh_1,Xn. EQCh monomial term f of p then
contributes a nonzero constant multiple of some power x5' of x,
to g and the construction guarantees that the exponents e; are
distinct for distinct terms . Thus g may be regarded as a monic
polynomial in x, with coefficients in the polynomial ring

kxi, ..., Xn_1]. Accordingly, r, is integral over the subalgebra A" of
A generated by k and sy, ..., S,_1. The inductive hypothesis then
guarantees that A’ takes the desired form; since A is integral and
finitely generated over A’ it does too. O
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To apply this result in the context of the Nullstellensatz we need a
simple lemmma, valid in a wider context.

Proposition, p. 694

If A and B are integral domains with B integral over A (that is,
every element of B integral over A), then Ais a field if and only if
Bis.

n—1 )

If Ais afield and b € B with b £ 0 satisfies b” + > a;b' =0, then
i=0

by cancelling a suitable power of b we may assume that ag # 0,

n—1 )
whence b has the multiplicative inverse —aa1 (6" 3 gb).

i=1
Conversely, if Bis a field, then any a € A with a # 0 has a
multiplicative inverse a~! in B, which must be integral over A, so

n—1 )

that a=" 4+ ° ¢;a~' = 0 for some ¢; € A. Multiplying by a1, we
i=0

see that a~! € A, as desired.
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It follows at once from this lemma and the preceding one that a
finitely generated k-algebra A that is a field is a finite extension
of k, since Noether normalization implies that A is integral over a
polynomial ring K[y, ..., ¥m]. which is a field if and only if m = 0.
Then we get

Weak Nullstellensatz; Theorem 31, p. 700

If k is algebraically closed and [ is a proper ideal in a polynomial
nng Pn = K[xy, ..., xn] then V(I) # 0.
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Enlarge / to a maximal ideal M of P,. Then the coordinate ring
Pn/Mis a finitely generated k-algebra that is a field, whence by
algebraic closure it must be isomorphic to k. If the surjection
from Pp to k sends the variable x; to g; € k, then Z(M) is the point
(a1,...,an) € k", whence Z(M) and Z(/) are nonempty. O
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Finally we are ready to prove the full Nullstellensatz, sometimes
called the "strong Nullstellensatz” in this context..

Nullstellensatz; Theorem 32, p. 700
If k is algebraically closed and | ¢ P, is a proper ideal, then
Z(V(1)) = V1. In particular the maps S — I(S), | — Z(I) define
inverse inclusion-reversing bijections between Zariski closed
subsets of k" and radical ideals in Pp.
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Clearly VI € Z(Z(1)), so it remains to prove the reverse inclusion.
Let f1,..., fm be afinite set of generators of  and let g € Z(Z(/)).
Infroduce a new variable x,,; and consider the ideal /'
generated by fi, ..., fmand X,,.19 — 1in Pyyq. At any point of
A" where the f; vanish so too does g, whence Xnr19 — 1 does
not vanish. Hence Z(I') = ), whence I’ must be all of P, ;. Now
we have an equation 1 = ayfy + - - - + Omfm + A1 (Xp19 — 1) for
some qg; € Ppy. Sefting y = —1_ and multiplying by a high power

Xn+1
ofyweget yN =cifi +--- + Cmnfn + Cmy1(g — y) for some
Cj € K[Xx1, ..., Xn, y]. Substituting g for y in this last equation shows
that gN e I = (fi,...,fm). s0 that g € VI, as desired. m
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A side benefit of Noether normalization is that it gives us a way to
define and compute the dimension of an algebraic set V,
whether or noft this set is a variety: writing the coordinate ring
k[V] as a finitely generated integral extension of a polynomial
rnng Klyi,. .., yql]. define the dimension of V to be d. This agrees
with the earlier definition if V is irreducible, since then the
quotient field of k[V] is a finite extension of the rational function
field in d variables over k, so has transcendence degree d. But
now it turns out that there is more that we can say about the
morphism V — A9 giving rise to the inclusion k[y;, . .., y4] € K[V].
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As an example of this, consider again the subvariety V of say C?
defined by the equation x3 — y2 = 0. We have seen that the
coordinate ring of V may be identified with the subring

R = C[t?, 1] of S = C[#]; the inclusion of R into S corresponds to
the morphism t — (12, 13) of Al(= C) to V, which is bijective. But
we also have the maps S — R sending t to 12, or t to 13; these
correspond to the projections my, m from V onto its first and
second coordinates. These maps are generically two-to-one
and three-to one, respectively, though in both cases there is only
one preimage of 0, namely the origin (0, 0). Thus these maps are
not covering mayps of fopological spaces; we call them ramified
finite covers, since not all fibers have the same size.
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We now digress to study the relationship between ideals of a ring
R and those of aring S containing R. We call the ring S an
extension of R.If I'is an ideal of R then it generates anideal I¢ = IS
of S, called the extension of [; similarly, given an ideal J of S, its
contraction J¢ = JN Ris an ideal of R. Clearly any ideal / of R lies
in the contraction /€ of its extension to S and any ideal J of S
contains the extension J<¢ of its contraction to R, but in general
we do not get equality in either case. The contraction P = Q¢ of
a prime ideal Qin Sis prime in R, since the quotient R/P, as a
subring of S/Q, cannot have zero divisors if S/Q does not. On the
other hand, the contraction of a maximal ideal in S need not be
maximal in R; nor is it true that every prime ideal of R, or even
every maximal ideal, is the contraction of some ideal in S.
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If Sis integral over R, however, then we have more control over
the situation. Given a prime ideal P of R that is the contraction
Q° of a prime ideal Q of S, we know that P is maximal if and only
if Q is maximal by a previous result, since S/Q is integral over R/P
and both are integral domains. If in addition S is finitely
generated as aring over R, say by si, ..., Sm. then given any
homomorphism = from R with kernel P to a field K there are only
finitely many ways to extend = to S, since each generator must
go to a root of a monic polynomial with specified coefficients. It
follows that there are only finitely many ideals Q whose
contraction is a fixed maximal ideal of P of R, all of them
maximal (Corollary 27, p. 695). | will show next time that there is
always at least one such ideal Q. The conseguence for
algebraic geometry is then that if f : V — W is a morphism of
algebraic varieties such that the algebra homomorphism

f*: k[W] — k[V] is injective and realizes k[V] as finitely generated
and integral over the image of k[W] in it, then f is surjective.
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