Lecture 4-4: Noether normalization and the proof of the Nullstellensatz

April 4, 2025

Lecture 4-4: Noether normalization and th

April 4, 2025

→ 프 → < 프 →</p>

As previously promised, I prove the Nullstellensatz, using the Noether Normalization Lemma.

æ

프 🖌 🔺 프 🛌

Noether Normalization Lemma; Theorem 30, p. 699

Let k be a field and suppose that $A = k[r_1, ..., r_n]$ is a finitely generated k-algebra. Then for some $m \le n$ there are elements $y_1 ..., y_m$ algebraically independent over k such that A is integral and finitely generated as a module over the k-subalgebra $k[y_1, ..., y_m]$.

Proof.

By induction on *n*. If the r_i are already algebraically independent then there is nothing to prove. Otherwise there is a nonzero p in the polynomial ring $P_n = k[x_1, \ldots, x_n]$, say of degree d, with $f(r_1,\ldots,r_n) = 0$. If n > 1, then set $\alpha_i = (1+d)^i$ for 1 < i < n - 1 and make a change of variables, defining $y_i = x_i - x_p^{\alpha_i}$ for these *i*; similarly set $s_i = r_i - r_p^{\alpha_i}$. Rewrite *p* as a polynomial q in $y_1, \ldots, y_{n-1}, x_n$. Each monomial term t of p then contributes a nonzero constant multiple of some power $x_n^{e_t}$ of x_n to q and the construction guarantees that the exponents e_t are distinct for distinct terms t. Thus q may be regarded as a monic polynomial in x_n with coefficients in the polynomial ring kx_1, \ldots, x_{n-1}]. Accordingly, r_n is integral over the subalgebra A' of A generated by k and s_1, \ldots, s_{n-1} . The inductive hypothesis then guarantees that A' takes the desired form; since A is integral and finitely generated over A' it does too.

ヘロン 人間 とくほ とくほ とう

To apply this result in the context of the Nullstellensatz we need a simple lemma, valid in a wider context.

Proposition, p. 694

If A and B are integral domains with B integral over A (that is, every element of B integral over A), then A is a field if and only if B is.

If A is a field and $b \in B$ with $b \neq 0$ satisfies $b^n + \sum_{i=0}^{n-1} a_i b^i = 0$, then by cancelling a suitable power of *b* we may assume that $a_0 \neq 0$, whence b has the multiplicative inverse $-a_0^{-1}(b^{n-1} + \sum_{i=1}^{n-1} a_i b^{i-1})$. Conversely, if *B* is a field, then any $a \in A$ with $a \neq 0$ has a multiplicative inverse a^{-1} in *B*, which must be integral over *A*, so that $a^{-n} + \sum_{i=0}^{n-1} c_i a^{-i} = 0$ for some $c_i \in A$. Multiplying by a^{n-1} , we see that $a^{-1} \in A$, as desired. A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

It follows at once from this lemma and the preceding one that a finitely generated k-algebra A that is a field is a finite extension of k, since Noether normalization implies that A is integral over a polynomial ring $k[y_1, \ldots, y_m]$, which is a field if and only if m = 0. Then we get

Weak Nullstellensatz; Theorem 31, p. 700

If k is algebraically closed and l is a proper ideal in a polynomial ring $P_n = k[x_1, ..., x_n]$ then $\mathcal{V}(l) \neq \emptyset$.

Proof.

Enlarge *I* to a maximal ideal *M* of P_n . Then the coordinate ring P_n/M is a finitely generated *k*-algebra that is a field, whence by algebraic closure it must be isomorphic to *k*. If the surjection from P_n to *k* sends the variable x_i to $a_i \in k$, then $\mathcal{Z}(M)$ is the point $(a_1, \ldots, a_n) \in k^n$, whence $\mathcal{Z}(M)$ and $\mathcal{Z}(I)$ are nonempty.

Finally we are ready to prove the full Nullstellensatz, sometimes called the "strong Nullstellensatz" in this context..

Nullstellensatz; Theorem 32, p. 700

If k is algebraically closed and $I \subset P_n$ is a proper ideal, then $\mathcal{I}(\mathcal{V}(I)) = \sqrt{I}$. In particular the maps $S \to I(S), I \to Z(I)$ define inverse inclusion-reversing bijections between Zariski closed subsets of k^n and radical ideals in P_n .

ヘロン 人間 とくほ とくほ とう

Proof.

Clearly $\sqrt{I \subseteq \mathcal{I}(\mathcal{Z}(I))}$, so it remains to prove the reverse inclusion. Let f_1, \ldots, f_m be a finite set of generators of I and let $g \in \mathcal{I}(\mathcal{Z}(I))$. Introduce a new variable x_{n+1} and consider the ideal l' generated by f_1, \ldots, f_m and $x_{n+1}g - 1$ in P_{n+1} . At any point of \mathbf{A}^{n+1} where the f_i vanish so too does g, whence $x_{n+1}g - 1$ does not vanish. Hence $\mathcal{Z}(I') = \emptyset$, whence I' must be all of P_{n+1} . Now we have an equation $1 = a_1 f_1 + \cdots + a_m f_m + a_{m+1} (x_{n+1}g - 1)$ for some $a_i \in P_{n+1}$. Setting $y = \frac{1}{X_{n+1}}$ and multiplying by a high power of y we get $y^N = c_1 f_1 + \cdots + c_m f_m + c_{m+1}(g - y)$ for some $c_i \in k[x_1, \ldots, x_n, y]$. Substituting g for y in this last equation shows that $g^N \in I = (f_1, \ldots, f_m)$, so that $g \in \sqrt{I}$, as desired.

イロン イボン イヨン イヨン 三日

A side benefit of Noether normalization is that it gives us a way to define and compute the dimension of an algebraic set V, whether or not this set is a variety: writing the coordinate ring k[V] as a finitely generated integral extension of a polynomial ring $k[y_1, \ldots, y_d]$, define the dimension of V to be d. This agrees with the earlier definition if V is irreducible, since then the quotient field of k[V] is a finite extension of the rational function field in d variables over k, so has transcendence degree d. But now it turns out that there is more that we can say about the morphism $V \to \mathbf{A}^d$ giving rise to the inclusion $k[y_1, \ldots, y_d] \subset k[V]$.

・ロ・ ・ 日・ ・ ヨ・

As an example of this, consider again the subvariety V of say \mathbb{C}^2 defined by the equation $x^3 - v^2 = 0$. We have seen that the coordinate ring of V may be identified with the subring $R = \mathbb{C}[t^2, t^3]$ of $S = \mathbb{C}[t]$; the inclusion of R into S corresponds to the morphism $t \mapsto (t^2, t^3)$ of $\mathbf{A}^1(=\mathbb{C})$ to V, which is bijective. But we also have the maps $S \rightarrow R$ sending t to t^2 , or t to t^3 ; these correspond to the projections π_1, π_2 from V onto its first and second coordinates. These maps are generically two-to-one and three-to one, respectively, though in both cases there is only one preimage of 0, namely the origin (0,0). Thus these maps are not covering maps of topological spaces; we call them ramified finite covers, since not all fibers have the same size.

We now digress to study the relationship between ideals of a ring R and those of a ring S containing R. We call the ring S an extension of R.If I is an ideal of R then it generates an ideal $l^e = lS$ of S, called the extension of I; similarly, given an ideal J of S, its contraction $J^{c} = J \cap R$ is an ideal of R. Clearly any ideal I of R lies in the contraction I^{ec} of its extension to S and any ideal J of S contains the extension J^{ce} of its contraction to R, but in general we do not get equality in either case. The contraction $P = Q^c$ of a prime ideal Q in S is prime in R, since the quotient R/P, as a subring of S/Q, cannot have zero divisors if S/Q does not. On the other hand, the contraction of a maximal ideal in S need not be maximal in R; nor is it true that every prime ideal of R, or even every maximal ideal, is the contraction of some ideal in S.

A D A A D A A D A A D A

If S is integral over R, however, then we have more control over the situation. Given a prime ideal P of R that is the contraction Q^{c} of a prime ideal Q of S, we know that P is maximal if and only if Q is maximal by a previous result, since S/Q is integral over R/Pand both are integral domains. If in addition S is finitely generated as a ring over R, say by s_1, \ldots, s_m , then given any homomorphism π from R with kernel P to a field K there are only finitely many ways to extend π to S, since each generator must go to a root of a monic polynomial with specified coefficients. It follows that there are only finitely many ideals Q whose contraction is a fixed maximal ideal of P of R, all of them maximal (Corollary 27, p. 695). I will show next time that there is always at least one such ideal Q. The consequence for algebraic geometry is then that if $f: V \to W$ is a morphism of algebraic varieties such that the algebra homomorphism $f^*: k[W] \rightarrow k[V]$ is injective and realizes k[V] as finitely generated and integral over the image of k[W] in it, then f is surjective.