Lecture 4-30: The flag variety and its vanishing ideal

April 30, 2025

Lecture 4-30: The flag variety and its vanish

< ■ > < ■ > = April 30, 2025 Last time I derived defining equations for Grassmannian varieties, using essentially the same relations (as will be observed today) as the ones used in the fall to define representations of $GL_n(\mathbb{C})$. I will continue with this program, deriving defining equations for a larger variety called the flag variety and identifying the polynomial representations of $GL_n(\mathbb{C})$ constructed in the fall as subspaces of its coordinate ring.

ヘロン 人間 とくほ とくほ とう

April 30, 2025

First I reformulate the Plücker coordinates and equations in a way that does not depend on fixing a particular basis of \mathbb{C}^n . Given any basis v_1, \ldots, v_n of \mathbb{C}^n , you saw in the fall that the dth exterior power $W = \bigwedge^d \mathbb{C}^n$ has as basis the *d*-fold wedges $v_{i_1} \wedge \cdots \wedge v_{i_d}$ of the v_i . Given a *d*-dimensional subspace *S* of \mathbb{C}^n , the *d*th exterior power $L = \bigwedge^d S$ is a line in *W*. For any indices i_1, \ldots, i_d between 1 and *n*, rather than defining the Plücker coordinate $D_{(i_1,...,i_d)}$ as I did last time, I fix a nonzero $v \in L$ and take the coefficient $c_{(i_1,...,i_d)}$ of $v_{i_1} \wedge \cdots \wedge v_{i_d}$ in v when it is written as a linear combination of d-fold wedges of v_i ; as with the $D_{(i_1,\ldots,i_d)}$, I decree that $c_{(i_1,\ldots,i_d)} = 0$ if two i_j are equal and changes by a sign if two i_i are interchanged.

Fixing the basis v_1, \ldots, v_n , one sees that the $c_{(i_1,\ldots,i_d)}$ attached to any S satisfy the same Plücker relations as the $D_{(i_1,\ldots,i_d)}$ do, and that these relations again define $\operatorname{Gr}_d(n)$ as a subvariety of $\mathbf{P}^{\binom{n}{d}-1}$. We now investigate what happens when a second subspace Tof dimension e < d is added to the picture. If $T \subset S$, then there is a basis v_1, \ldots, v_e of T which extends to a basis v_1, \ldots, v_d of S, which in turn extends to a basis v_1, \ldots, v_n of \mathbb{C}^n . For any $k < e_n$ defining the coordinates $c_{(i_1,...,i_d)}$ and $c'_{(i_1,...,i_d)}$ as above relative to S and T, respectively, it is trivial to check that the Plücker relation corresponding to k and all exchanges of the first k indices among the i_r with any indices among the i_s holds.

Conversely, suppose that $T \not\subset S$. Extend a basis v_1, \ldots, v_s of $S \cap T$ to bases v_1, \ldots, v_d and $v_1, \ldots, v_s, v'_{s+1}, \ldots, v'_{\theta}$ of S and T, respectively, and finally the basis $'_{s+1}, \ldots, v'_{\theta}, v_1, \ldots, v_d$ to a basis of \mathbb{C}^n . Taking Plücker coordinates of T and S with respect to this last basis, one checks easily that Plücker relation with k = 1 does not hold, since both coordinates on its left side are 1 while all products of coordinates on its right side have leftmost factor equal to 0.

イロン 不良 とくほう 不良 とうほう

For every d with $1 \le d \le n$ and all tuples (i_1, \ldots, i_d) of indices between 1 and *n*, set up Plücker coordinates $c_{(i_1,...,i_d)}$. Impose the Plücker relations not only on the individual $c_{(i_1,...,i_d)}$ but also on $c_{(i_1,...,i_d)}$ and $c_{(j_1,...,j_e)}$ as above for all e < d. The upshot of the foregoing discussion is then that these relations define a projective variety parametrizing all chains of subspaces $V_0 = 0 \subset V_1 \subset \cdots \subset V_n = \mathbb{C}^n$ of \mathbb{C}^n such that dim $V_i = i$. Such chains constitute (by definition) the flag variety \mathcal{F}_n of \mathbb{C}^n . The general linear group $GL_n(\mathbb{C})$ acts transitively on \mathcal{F}_n ; the stabilizer of the standard flag whose *i*th subspace V_i is spanned by the first *i* coordinate vectors e_1, \ldots, e_i is then the subgroup B of G consisting of the upper triangular matrices in it. Thus \mathcal{F}_n may be identified with the homogeneous space G/B. Its dimension is dim G – dim $B = \binom{n}{2}$. You may have seen this homogeneous space mentioned before in a manifolds class; the differentiable structure carried by G and B gives it a differentiable structure.

ヘロン 人間 とくほ とくほ とう

Now as it happens that you have seen these relations before: they are exactly the ones used to define the Schur module M^{λ} for $GL_n(\mathbb{C})$ corresponding to the partition $\lambda = (\lambda_1, \ldots, \lambda_n)$ in the lecture on November 22. More precisely, the columns of the Young diagram of λ all have lengths at most n; suppose for each $j \leq n$ there are d_j columns of length j. The ideal I generated by the Plücker relations is homogeneous, so that the quotient R by this ideal has a graded structure, a typical graded piece being indexed by the tuple (d_1, \ldots, d_n) , Then this graded piece carries a natural action of $GL_n(\mathbb{C})$ making it isomorphic to M^{λ} .

Moreover, you have seen that there are elements in a suitable polynomial ring over \mathbb{C} (subdeterminants of certain matrices whose entries are independent variables over \mathbb{C}) satisfying the Plücker relations. In particular the quotient of an appropriate polynomial ring by the ideal *I* generated by the Plücker relations is an integral domain. Thus *I* is prime and equal to the vanishing ideal corresponding to \mathcal{F}_n as a projective variety. This variety is irreducible. See Chapter 9 of Fulton's book Young Tableaux.

イロト イポト イヨト イヨト

April 30, 2025

It also follows from the above analysis that the coordinate ring Rof \mathcal{F}_n is isomorphic as a representation of $GL_n(\mathbb{C})$ to the direct sum of all polynomial representations of this group, each occurring exactly once. This last property turns out to be an instantiation of a general version of Frobenius reciprocity, proved for finite groups in the fall. The variety \mathcal{F}_n carries a natural action of $G = GL_n(\mathbb{C})$, whence G also acts on its coordinate ring R. As a representation of $G = GL_{p}(\mathbb{C})$, the ring R behaves like the representation induced to G from the trivial representation of B, so that every irreducible polynomial representation M^{λ} of G appears in R with multiplicity equal to the dimension of the subspace S of vectors in M^{λ} sent to scalar multiples of themselves by elements of B (it is this subspace rather than the subspace of B-fixed vectors that is relevant because \mathcal{F}_n is a projective rather than an affine variety).

ヘロン ヘアン ヘビン ヘビン

Now a key fact from the representation theory of Lie groups (of which G is one) that I invoked last November to show that M^{λ} is irreducible is that the subspace S is one-dimensional for all partitions λ ; up to scalar multiple, M^{λ} has a unique vector of weight λ and λ is the highest weight occurring in M^{λ} with respect to a suitable ordering of weights. Thus it is no surprise that R is the direct sum of all the irreducible polynomial representations of G.

April 30, 2025

I close by mentioning that in my own work I have developed analogues of the representations M^{λ} for other classical groups, that is, groups of linear automorphisms of $V = \mathbb{C}^n$ preserving a suitable nondegenerate bilinear form $f = (\cdot, \cdot)$. The form f, a function from $V \times V$ to \mathbb{C} , is linear in each coordinate and is such that the only $v \in V$ with (v, w) = 0 for all $w \in V$ is 0. In addition f is either symmetric, meaning that (v, w) = (w, v), or skew-symmetric, meaning that (v, w) = -(w, v). In the latter case the dimension n = 2m of V must be even. The groups in question are the orthogonal groups $O(n, \mathbb{C})$, if the form is symmetric, or the symplectic groups $Sp(2m, \mathbb{C})$, if the form is skew-symmetric. In both cases the flag variety is defined to consist of all chains of subspaces $V_0 \subset \cdots V_m$ of \mathbb{C}^{2m} or \mathbb{C}^{2m+1} such that dim $V_i = i$ and all V_i are isotropic with respect to the form (so that it is identically 0 when restricted to V_i). In addition to the Plücker relations one imposes guadratic relations generating the ideal of the flag variety, corresponding to this isotropic condition. ヘロト ヘ回ト ヘヨト ヘヨト

11/1

An additional twist is that partitions are not quite enough to capture all representations in the orthogonal case. There is another group Pin (n, \mathbb{C}) , a double cover of $O_n(\mathbb{C})$, that admits certain finite-dimensional representations that do *not* carry an $O_n(\mathbb{C})$ action. These are indexed by "partitions" $(\lambda_1, \ldots, \lambda_m)$ such that each λ_i is a nonnegative integer plus 1/2. They correspond to "tableaux" whose leftmost columns consist of half-boxes rather than boxes. In all cases semistandard tableaux or "tableaux" with entries in the appropriate set $\{\pm 1, \ldots, \pm m\}$ of integers, possibly together with 0 and suitably restricted, provide a basis for the representation corresponding to the tableau shape.