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Last time I derived defining equations for Grassmannian varieties,
using essentially the same relations (as will be observed today)
as the ones used in the fall to define representations of GLn(C). I
will continue with this program, deriving defining equations for a
larger variety called the flag variety and identifying the
polynomial representations of GLn(C) constructed in the fall as
subspaces of its coordinate ring.
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First I reformulate the Plücker coordinates and equations in a
way that does not depend on fixing a particular basis of Cn.
Given any basis v1, . . . , vn of Cn, you saw in the fall that the dth
exterior power W =

∧d Cn has as basis the d-fold wedges
vi1 ∧ · · · ∧ vid of the.vi . Given a d-dimensional subspace S of Cn,
the dth exterior power L =

∧d S is a line in W . For any indices
i1, . . . , id between 1 and n, rather than defining the Plücker
coordinate D(i1,...,id) as I did last time, I fix a nonzero v ∈ L and
take the coefficient c(i1,...,id) of vi1 ∧ · · · ∧ vid in v when it is written
as a linear combination of d-fold wedges of vi ; as with the
D(i1,...,id), I decree that c(i1,...,id) = 0 if two ij are equal and
changes by a sign if two ij are interchanged.
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Fixing the basis v1, . . . ,vn, one sees that the c(i1,...,id) attached to
any S satisfy the same Plücker relations as the D(i1,...,id) do, and

that these relations again define Grd(n) as a subvariety of P(
n
d)−1.

We now investigate what happens when a second subspace T
of dimension e < d is added to the picture. If T ⊂ S, then there is
a basis v1, . . . ,ve of T which extends to a basis v1, . . . ,vd of S,
which in turn extends to a basis v1, . . . ,vn of Cn. For any k ≤ e,
defining the coordinates c(i1,...,id) and c′

(j1,...,je)
as above relative

to S and T , respectively, it is trivial to check that the Plücker
relation corresponding to k and all exchanges of the first k
indices among the jr with any indices among the is holds.
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Conversely, suppose that T ̸⊂ S. Extend a basis v1, . . . vs of S ∩ T to
bases v1, . . . vd and v1, . . . ,vs, v ′

s+1, . . . ,v
′
e of S and T , respectively,

and finally the basis ′
s+1, . . . , v

′
e, v1, . . . ,vd to a basis of Cn. Taking

Plücker coordinates of T and S with respect to this last basis, one
checks easily that Plücker relation with k = 1 does not hold, since
both coordinates on its left side are 1 while all products of
coordinates on its right side have leftmost factor equal to 0.
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For every d with 1 ≤ d ≤ n and all tuples (i1, . . . , id) of indices
between 1 and n, set up Plücker coordinates c(i1,...,id). Impose
the Plücker relations not only on the individual c(i1,...,id) but also
on c(i1,...,id) and c(j1,...,je) as above for all e < d. The upshot of the
foregoing discussion is then that these relations define a
projective variety parametrizing all chains of subspaces
V0 = 0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn of Cn such that dimVi = i. Such
chains constitute (by definition) the flag variety Fn of Cn. The
general linear group GLn(C) acts transitively on Fn; the stabilizer
of the standard flag whose ith subspace Vi is spanned by the first
i coordinate vectors e1, . . . ,ei is then the subgroup B of G
consisting of the upper triangular matrices in it. Thus Fn may be
identified with the homogeneous space G/B. Its dimension is
dimG − dimB =

(n
2

)
. You may have seen this homogeneous

space mentioned before in a manifolds class; the differentiable
structure carried by G and B gives it a differentiable structure.
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Now as it happens that you have seen these relations before:
they are exactly the ones used to define the Schur module Mλ

for GLn(C) corresponding to the partition λ = (λ1, . . . , λn) in the
lecture on November 22. More precisely, the columns of the
Young diagram of λ all have lengths at most n; suppose for each
j ≤ n there are dj columns of length j. The ideal I generated by
the Plücker relations is homogeneous, so that the quotient R by
this ideal has a graded structure, a typical graded piece being
indexed by the tuple (d1, . . . ,dn), Then this graded piece carries
a natural action of GLn(C) making it isomorphic to Mλ.
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Moreover, you have seen that there are elements in a suitable
polynomial ring over C (subdeterminants of certain matrices
whose entries are independent variables over C) satisfying the
Plücker relations. In particular the quotient of an appropriate
polynomial ring by the ideal I generated by the Plücker relations
is an integral domain. Thus I is prime and equal to the vanishing
ideal corresponding to Fn as a projective variety. This variety is
irreducible. See Chapter 9 of Fulton’s book Young Tableaux.
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It also follows from the above analysis that the coordinate ring R
of Fn is isomorphic as a representation of GLn(C) to the direct
sum of all polynomial representations of this group, each
occurring exactly once. This last property turns out to be an
instantiation of a general version of Frobenius reciprocity, proved
for finite groups in the fall. The variety Fn carries a natural action
of G = GLn(C), whence G also acts on its coordinate ring R. As a
representation of G = GLn(C), the ring R behaves like the
representation induced to G from the trivial representation of B,
so that every irreducible polynomial representation Mλ of G
appears in R with multiplicity equal to the dimension of the
subspace S of vectors in Mλ sent to scalar multiples of
themselves by elements of B (it is this subspace rather than the
subspace of B-fixed vectors that is relevant because Fn is a
projective rather than an affine variety).
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Now a key fact from the representation theory of Lie groups (of
which G is one) that I invoked last November to show that Mλ is
irreducible is that the subspace S is one-dimensional for all
partitions λ; up to scalar multiple, Mλ has a unique vector of
weight λ and λ is the highest weight occurring in Mλ with respect
to a suitable ordering of weights. Thus it is no surprise that R is the
direct sum of all the irreducible polynomial representations of G.
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I close by mentioning that in my own work I have developed
analogues of the representations Mλ for other classical groups,
that is, groups of linear automorphisms of V = Cn preserving a
suitable nondegenerate bilinear form f = (·, ·). The form f , a
function from V × V to C, is linear in each coordinate and is such
that the only v ∈ V with (v ,w) = 0 for all w ∈ V is 0. In addition f
is either symmetric, meaning that (v ,w) = (w , v), or
skew-symmetric, meaning that (v ,w) = −(w , v). In the latter
case the dimension n = 2m of V must be even. The groups in
question are the orthogonal groups O(n,C), if the form is
symmetric, or the symplectic groups Sp(2m,C), if the form is
skew-symmetric. In both cases the flag variety is defined to
consist of all chains of subspaces V0 ⊂ · · ·Vm of C2m or C2m+1

such that dimVi = i and all Vi are isotropic with respect to the
form (so that it is identically 0 when restricted to Vi). In addition
to the Plücker relations one imposes quadratic relations
generating the ideal of the flag variety, corresponding to this
isotropic condition.
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An additional twist is that partitions are not quite enough to
capture all representations in the orthogonal case. There is
another group Pin(n,C), a double cover of On(C), that admits
certain finite-dimensional representations that do not carry an
On(C) action. These are indexed by “partitions” (λ1, . . . , λm) such
that each λi is a nonnegative integer plus 1/2. They correspond
to “tableaux” whose leftmost columns consist of half-boxes
rather than boxes. In all cases semistandard tableaux or
“tableaux” with entries in the appropriate set {±1, . . . ,±m} of
integers, possibly together with 0 and suitably restricted, provide
a basis for the representation corresponding to the tableau
shape.
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