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Last time | derived defining equations for Grasssnannian varieties,
using essentially the same relations (as will be observed today)
as the ones used in the fall to define representations of GL,(C). |
will continue with this program, deriving defining equations for a
larger variety called the flag variety and identifying the
polynomial representations of GL,(C) constructed in the fall as
subspaces of its coordinate ring.
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First | reformulate the PlUcker coordinates and equations in a
way that does not depend on fixing a particular basis of C".
Given any basis vy, ..., v, of C", you saw in the fall that the dth
exterior power W = /\d C" has as basis the d-fold wedges

Vi, A--- A v, of the.v;. Given a d-dimensional subspace S of C”,
the dth exterior power L = /\dS is alinein W. For any indices
i,...,Ig between 1 and n, rather than defining the PlUcker
coordinate Dy, ...i,) as | did last time, | fix a nonzero v € L and
take the coefficient c(;, . i,y Of Vi, A+ A vy, In v when it is written
as a linear combination of d-fold wedges of v;; as with the
Di....iy)- 1 decree that ¢, iy = 0if two j; are equal and
changes by a sign if two j; are inferchanged.
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Fixing the basis v1, ..., vh, one sees that the ¢, ;) attached to
any S satisfy the same Plucker relatfions as the D, . ;) do, and

that these relations again define Grgy(n) as a subvariety of p(a)-T
We now investigate what happens when a second subspace T
of dimension e < d is added to the picture. If T C S, then there is
a basis v, ..., Ve of T which extends to a basis vy, ..., vg of S,
which in tfurn extends to a basis vy, ..., v, of C". Forany k < e,
defining the coordinates c(;, ..i,) ond c(j] ..... j) O8 above relative
to S and T, respectively, it is trivial to check that the Plucker
relation corresponding to k and all exchanges of the first k

indices among the j, with any indices among the is holds.
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Conversely, suppose that T ¢ S. Extend a basis v4,...vsof SN T to

bases vq,...vgand vy, ..., Vs, Vg q,..., Vg Of Sand T, respectively,
and finally the basis §_ ;,..., Vg, v, ..., Vg To abasis of C". Taking

PlUcker coordinates of T and S with respect to this last basis, one
checks easily that Plucker relation with k = 1 does not hold, since
both coordinates on its left side are 1 while all products of
coordinates on its right side have leffmost factor equal to 0.
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Forevery d with 1 < d < nand all tuples (iy, ..., iy) of indices
between 1 and n, set up PlUcker coordinates ¢, ;). Impose
the Pllcker relations not only on the individual ¢;, ... ;) buf also
on C(j....iy) and ¢y, .. j,) Os above for all e < d. The upshot of the
foregoing discussion is then that these relations define a
projective variety parametrizing all chains of subspaces
Vo=0c VjC---C V,=C"of C"such that dim V; = i. Such
chains constitute (by definition) the flag variety F, of C". The
general linear group GLy(C) acts fransitively on Fj; the stabilizer
of the standard flag whose ith subspace V; is spanned by the first
i coordinate vectors ey, ..., g; is then the subgroup B of G
consisting of the upper triangular matrices in it. Thus F, may be
identified with the homogeneous space G/B. Its dimension is
dim G — dim B = (7). You may have seen this homogeneous
space mentioned before in a manifolds class; the differentiable
structure carried by G and B gives it a differentiable structure.
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Now as it happens that you have seen these relations before:
they are exactly the ones used to define the Schur module M*
for GLn(C) corresponding to the partition A = (A\y,...,Ap) in the
lecture on November 22. More precisely, the columns of the
Young diagram of A all have lengths at most n; suppose for each
J < nthere are g; columns of length j. The ideal | generated by
the Plucker relations is homogeneous, so that the quotient R by
this ideal has a graded structure, a typical graded piece being
indexed by the tuple (d, ..., dn). Then this graded piece carries
a natural action of GL,(C) making it isomorphic to M?.
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Moreover, you have seen that there are elements in a suitable
polynomial ring over C (subdeterminants of certain matrices
whose entries are independent variables over C) satisfying the
PlUcker relations. In particular the quotient of an appropriate
polynomial ring by the ideal | generated by the PlUcker relations
is an integral domain. Thus / is prime and equal to the vanishing
ideal corresponding to F, as a projective variety. This variety is
ireducible. See Chapter 9 of Fulton’s book Young Tableaux.
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It also follows from the above analysis that the coordinate ring R
of Fn is isomorphic as a representation of GL,(C) to the direct
sum of all polynomial representations of this group, each
occurring exactly once. This last property turns out to be an
instantiation of a general version of Frobenius reciprocity, proved
for finite groups in the fall. The variety F, carries a natural action
of G = GLy(C), whence G also acts on its coordinate ring R. As a
representation of G = GLy(C), the ring R behaves like the
representation induced to G from the trivial representation of B,
so that every irreducible polynomial representation M* of G
appears in R with multiplicity equal to the dimension of the
subspace S of vectors in M* sent to scalar multiples of
themselves by elements of B (it is this subspace rather than the
subspace of B-fixed vectors that is relevant because Fj is a
projective rather than an affine variety).
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Now a key fact from the representation theory of Lie groups (of
which G is one) that | invoked last November to show that M* is
ireducible is that the subspace S is one-dimensional for all
partitions \; up to scalar multiple, M* has a unique vector of
weight A and X is the highest weight occurring in M* with respect
to a suitable ordering of weights. Thus it is no surprise that R is the
direct sum of all the irreducible polynomial representations of G.
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| close by mentioning that in my own work | have developed
analogues of the representations M* for other classical groups,
that is, groups of linear automorphisms of V = C" preserving a
suitable nondegenerate bilinear form f = (-, -). The form f, a
function from V x V to C, is linear in each coordinate and is such
that the only v € V with (v, w) =0 forall w € V' is O. In addition f
is either symmetric, meaning that (v, w) = (w, v), or
skew-symmetric, meaning that (v, w) = —(w, v). In the latfter
case the dimension n = 2m of V must be even. The groups in
question are the orthogonal groups O(n, C), if the form is
symmetric, or the symplectic groups Sp(2m, C), if the form is
skew-symmetric. In both cases the flag variety is defined to
consist of all chains of subspaces Vg C - - - Vi, of C2M or ¢2M+]
such that dim V; = i and all V; are isotropic with respect to the
form (so that it is identically O when restricted to V). In addition
to the PlUcker relations one imposes quadratic relations
generating the ideal of the flag variety, corresponding to this
isotropic condition.
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An additional twist is that parfitions are not quite enough to
capture all representations in the orthogonal case. There is
another group Pin(n, C), a double cover of Ox(C), that admits
certain finite-dimensional representations that do not carry an
On(C) action. These are indexed by “partitions” (A, ..., Am) such
that each ); is a nonnegative integer plus 1/2. They correspond
to “tableaux” whose leftmost columns consist of half-boxes
rather than boxes. In all cases semistandard tableaux or
“tableaux” with enfries in the appropriate seft {£1,...,+m} of
infegers, possibly together with 0O and suitably restricted, provide
a basis for the representation corresponding to the tableau
shape.
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