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I will wrap up the discussion of prime spectra with three
important examples. I then introduce Grassmannians in a
complex vector space; these are important examples of
projective varieties
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I present two examples of prime spectra, following Examples 2
and 3 on pp. 735-6. First take R = Z[x ], the polynomial ring in one
variable over Z. Any prime ideal P of R has prime contraction to
Z, which must be either 0 or the ideal (p) generated by a prime
number p. In the first case P does not meet the multiplicatively
closed set Z∗ of nonzero integers, so it is the contraction to R of a
prime ideal in Q[x ]. Any such ideal is principal, either 0 or
generated by an irreducible polynomial f ∈ Z[x ] which is
moreover primitive in the sense that the greatest common divisor
of its coefficients is 1; recall by Gauss’s Lemma that a primitive
polynomial in Z[x ] is irreducible if and only if it is irreducible in
Q[x ]. The ideal (f ) is not maximal.

Lecture 4-28: Wrapping up prime spectra and introducing GrassmanniansApril 28, 2025 3 / 1



In the second case, where P contracts to (p),P is the preimage
in R of a prime ideal in R′ = Zp[x ], a principal ideal domain; so P
must take the form (p,g), where g is a monic polynomial in R
whose reduction mod p is irreducible in R′. The ideal (p,g) is
then maximal.

Following the picture on p. 737, we can portray Spec R by
showing how it projects by contraction to Spec Z. For example,
take f = x4 + 1 ∈ R. This polynomial is irreducible, but becomes
reducible upon reduction modulo any prime p. Modulo 2, this
polynomial is the fourth power of x + 1, so there is just one closed
point in Z(f ) lying over (2) ∈ Spec Z. Modulo a prime p ≡ 1
mod 8, f has four distinct roots, so there are four such closed
points; modulo all other primes p, there are just two such closed
points.
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The picture is much the same (but perhaps geometrically more
satisfying) for R = k[x , y ], the polynomial ring in two variables over
an algebraically closed field k ; the point is that R can be viewed
as a polynomial ring in one variable y over the PID k[x ]. The
elements of Spec R consist of the generic point (0); the principal
ideal (f ) generated by an irreducible polynomial f in R, of height
1; and the closed points (x − a, y − b) for (a,b) ∈ k2. The closure
of an “intermediate” point like (f ) consists of this point together
with the closed points corresponding to the zero locus of f .

Finally, I mention that for three or more variables all hell breaks
loose; for n ≥ 3 there are prime ideals in k[x1, . . . , xn] requiring
arbitrarily many generators.
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Shifting now to number theory, I look at the prime spectrum of a
familiar Dedekind domain.

Example
First let R = Z[i], the ring of Gaussian integers, which some of you
may have seen discussed in an undergraduate course. As
previously noted, R is a PID. Its prime ideals are closely related to
those of Z; this is not surprising since R is a finitely generated
integral extension of Z. First of all, any prime p ∈ Z with p ≡ 3
mod 4 remains prime in R; equivalently, the ideal (p) that it
generates in R is prime. Recall that such a prime p is called inert
(in R). If instead p ≡ 1 mod 4, then p is the product of two primes
a ± bi in R; here a2 + b2 = p and a2,b2 are the only pair of
integer squares adding to p. In this case p splits completely in R,
corresponding to two prime ideals (a + bi), (a − bi). Finally, in the
exceptional case p = 2, the ideal p is the square of the prime
ideal (1 + i) = (1 − i). This prime is the only one that ramifies in R.
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Example
To get a picture of Spec R, start with Spec Z, which consists of
the generic point 0 together with a closed point for each prime
p. Over (contracting to) (0) ∈ Spec Z one of course has only
(0) ∈ Spec R; over (p) ∈ Spec Z one has only (p) ∈ Spec R if p ≡ 3
mod 4. If p ≡ 1 mod 4,p = a2 + b2, then over (p) ∈ Spec Z one
has (a +bi), (a −bi) ∈ Spec R. Finally, over (2) one has only (1+ i).
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Taking a break from prime ideals, I now return to varieties, this
time projective ones. I am now returning to Fulton’s book Young
Tableaux that I used in the fall, this time following Chapter 9. For
definiteness take the basefield k to be C, although any
algebraically closed field would work equally well. Recall that I
have defined projective n-space Pn to be affine (n + 1)-space
An+1 = Cn+1 with the origin 0 removed, subject to the
equivalence relation (a1, . . . ,an+1) ∼ k(a1, . . . ,an+1) if k ∈ C∗.
Equivalently, one may regard Pn as the collection of lines through
0 in Cn+1. It is natural to wonder whether the set of (vector)
subspaces of Cn of a fixed dimension d also has the structure of
a variety; the case d = 1 shows that one should expect this to be
a projective rather than an affine variety.
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The answer is yes; the variety in question is called the
d-Grassmannian (in Cn) and is denoted Grd(n). To verify this I
need to attach coordinates to d-dimensional subspaces of Cn.
For this purpose recall from the fall quarter that the dth exterior
power

∧d Cn of Cn is a vector space of dimension
(n

d

)
; if V is a

d-dimensional subspace of Cn, then
∧d V is a line lying in this

subspace. So one needs a way to coordinatize exterior powers.
This is easily done using determinants. Specifically, given a
d-dimensional subspace V , let M be a d × n matrix whose rows
form a basis of V . Then there are many choices for M, given V ,
but if for every d-tuple (i1, . . . , id) of indices with
1 ≤ i1 < . . . < id ≤ n one lets D(i1,...,id) be the determinant of the
square matrix M(i1,...,id) consisting of columns i1, . . . , id of M (in that
order), then the D(i1,...,id) are uniquely determined by V up to an
overall nonzero scalar multiple. Since the matrix M has full rank
d, not all of these subdeterminants can be 0.
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By labelling each subspace V with the
(n

d

)
-tuple with

coordinates the D(i1,...,id ), regarded as a point in the projective

space P(
n
d)−1, I realize Grd(n) as a subvariety of this space. To

work out its dimension I normalize the matrix M attached to a
subspace V , as follows. From linear algebra any two choices
M1,M2 of M for the same V can be obtained one form another
by row operations; so I can normalize M by putting it in row
echelon form. The generic such form, realized on an open
subset of variety of subspaces, has its first d columns equal to
those of the d × d identity matrix; note that if the columns take
this form, then the rows of M are automatically independent
(regardless of what the other entries are) and so form a basis of a
d-dimensional subspace. Accordingly the dimension of Grd(n) is
d(n − d). In particular one recovers the dimension of Pn as n − 1.
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The next step is to work out the equations defining Grd(n) as a
subvariety of projective space. I first extend the definition of
D(i1,...,id) in a natural way, taking it to be the determinant of the
matrix M(i1,...,id) whose columns are the columns i1, . . . , id of M in
that order, for any indices ij between 1 and n, not necessarily
increasing or even distinct. Thus D(i1,...,id) = 0 if two indices ij , ik are
the same and it changes by a sign if ij , ik are interchanged. Next
recall Sylvester’s Lemma from the lecture on November 22 in the
fall (whose notes I have sent to all of you).
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It states that if N and P are two d × d matrices over a
commutative ring R and if k is a number between 1 and d then
one has the identity

(detN)(detP) =
∑

(detN′)(detP ′)

where the sum takes place over all matrices (N′,P ′) obtained
from (N,P) by interchanging the first k columns of P with any set
of k columns in N, preserving the positions of the columns. In
terms of the coordinates D(i1,...,id) introduced above, this says that

D(i1,...,id)D(j1,...,jd) =
∑

D(i′1,...,i
′
d)

D(j′1,...,j
′
d)

where (i ′1, . . . , i
′
d), (j

′
1, . . . , j

′
d) run through all tuples of indices

obtained from (i1, . . . , id), (j1, . . . , jd) by interchanging the first k of
the jr with any k of the ir , preserving the positions of the indices.
These are called the Plücker relations, corresponding to what I
called the quadratic or exchange relations in November.
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For example, if d = 2 and n = 4 then there is essentially just one
Plücker relation, which says that
D(1,2)D(3,4) = D(3,2)D(1,4) + D(1,3)D(2,4). In general, given any
coordinates D(i1,...,id) satisfying the Plücker relations and not all 0,
one can produce a d × n matrix M such that
E(j1,...,jd) = detM(j1,...,jd) = D(j1,...,jd) for all indices jr . Start with a fixed
set of indices i1, . . . , id such that x = D(i1,...,id) ̸= 0; multiplying by a
nonzero scalar, we may assume that x = 1. Then define a matrix
M = (mjk) via mjk = D(i1,...,k,...,id), where k replaces ij as the jth
coordinate. Then we have E(i1,...,id) = D(i1,...,id) = 1 by the
construction. Now assume inductively that E(j1,...,jd) = D(j1,...,jd)
whenever {j1, . . . , jd} overlaps {i1, . . . , id} in more than k indices,
and let {j1, . . . , jd} overlap {i1, . . . , id} in exactly k indices;
rearranging, we may assume that j1 is not one of these indices.
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Applying Sylvester’s Lemma in the case k = 1 to M(i1,...,id),M(j1,...,jd)
and the inductive hypothesis, we get E(j1,...,jd) = D(j1,...,jd), as
desired. Thus the Plücker relations cut out the right subvariety
Grd(n) of P(

n
d)−1. Also distinct subspaces have distinct Plücker

coordinates. To see this note first that given a matrix M of rank d,
the matrix NM corresponds to the same subspace as M for any
d × d nonsingular matrix N. Thus we may assume without loss of
generality, given a nonsingular d × d submatrix S of M, that S = I,
the identity matrix. Then the recipe above for the matrix M,
given the Plücker coordinates of the subspace, shows that this
matrix is unique.
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