Lecture 4-21: Dimension theory, continued

April 21, 2025

Lecture 4-21: Dimension theory, continuec

April 21, 2025

1/1

< ∃→

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Continuing from last time, let R be a Noetherian local ring with maximal ideal / and Q an *I*-primary ideal. Last time I showed that the length $\ell(R/Q^n)$ of the quotient R/Q^n as an R/Q-module is a polynomial function $\chi_{\Omega}(n)$ of *n* for large *n*; here I am regarding *R* as a module over itself. I now investigate what happens if Q is replaced by another *I*-primary ideal Q'. First I note a general fact: in any Noetherian ring, any ideal J contains a power \sqrt{J}^m of its radical \sqrt{J} . This follows since \sqrt{J} is finitely generated, say by x_1, \ldots, x_r ; since we have $x_i^{n_i} \in J$ for some integer n_i , the muthomial theorem guarantees that any combination $c = \sum r_i x_i$ has $c^N \in J$ for $N = \sum n_i$.

Then I have

Proposition

The polynomial $\chi_Q(n)$ has the same degree as $\chi_I(n)$.

Indeed, since the radical of Q is *I*, we must have $I^m \subseteq Q \subset I$ for some *m*, whence $\chi_I(n) \leq \chi_Q(n) \leq \chi_I(mn)$ for all large *n*; letting *n* go to infinity, the result follows.

Denote the common degree of $\chi_Q(n)$ for all *l*-primary ideal Q by d(R). Now we finally have an explicit measure of the dimension of any Noetherian local ring R, namely d(R). For a general Noetherian R, we define d(R) to be the supremum of all $d(R_l)$, where R_l runs through all the localizations of R by maximal ideals l. It is clear that each $d(R_l)$ is finite, though I will later give an example to show that d(R) can be infinite.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Now I am ready to give the other two measures of the dimension of a Noetherian local ring R with maximal ideal I, both of them turning out to equal d(R). First let $\delta(R)$ be the least number of generators of any I-primary ideal Q; next recall from a previous lecture that the Krull dimension dim R of R is the largest n for which there exists a strictly increasing chain $P_0 \subset P_1 \subset \cdots \subset P_n$ of prime ideals of R. I already know that $\delta(R) > d(R)$ by previous results; the next goal is to show that $d(R) > \dim R$. To prove this I need an auxiliary result about stable Q-filtrations called the Artin-Rees lemma. Let J be any ideal in a Noetherian ring R (not necessarily local) and let M be a finitely generated R-module with a filtration (M_n) . As in the special case where J is primary, we say that (M_n) is a *J*-filtration if $JM_n \subseteq M_{n+1}$ for all *n*; it is a stable *J*-filtration if in addition $JM_n = M_{n+1}$ for large enough *n*.

ヘロン 人間 とくほ とくほ とう

I now define a graded ring attached to R and graded module attached to M different from G(R) and G(M). Set $R^* = \bigoplus_{n=0}^{\infty} J^n$ (taking $J^0 = R$, as before) and $M^* = \bigoplus_{n=0}^{\infty} M_n$. Since $J^n M_m \subset M_{m+n}.M^*$ is a graded R^* -module. Note that R^* is Noetherian: if J is generated by x_1, \ldots, x_r , then R^* is generated as an $J^0 = R$ -algebra by the same x_i , regarded as elements of the 1-graded piece J.

Proposition

With notation as above, the J-filtration (M_n) is stable if and only if M^* is finitely generated as an R^* -module.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Indeed, each M_n is finitely generated, whence so is each $Q_n = \bigoplus_{i=0}^n M_i$ as an *R*-module. Then Q_n generates an A^* -module, namely $M_n^* = M_0 \oplus \cdots \oplus M_n \oplus JM_n \oplus \cdots \oplus J^r M_n \oplus \cdots$. This module is finitely generated since the Q_n are finitely generated as *R*-modules. Since R^* is Noetherian, M^* is finitely generated if and only if the chain $M_0^* \subset M_1^* \subseteq \cdots$ stops, so that $M^* = M_{n_0}^*$. This says exactly that the filtration (M_n) is stable (starting at n_0).

・ロ・ ・ 日・ ・ ヨ・

Artin-Rees Lemma

Let *R* be a Noetherian ring, *J* an ideal of *R*, and *M* a finitely generated *R*-module equipped with a stable *J*-filtration (M_n) . Let *M'* be a submodule of *M*. Then the induced filtration $(M' \cap M_n)$ of *M'* is stable.

It is immediate that $(M' \cap M_n)$ is indeed a *J*-filtration. It then defines a graded R^* -module which is a submodule of M^* and thus finitely generated, since R^* is Noetherian. Then the lemma follows from the preceding proposition.

Now return to the previous setting, so that *R* is a Noetherian local ring with maximal ideal *I* and *Q* is an *I*-primary ideal. Let *M* be a finitely generated *R*-module and $x \in R$ a non-zero divisor in *M* Set M' = M/xM.

Proposition

In this setting we have $d(M') \leq d(M) - 1$.

Proof.

Let N = xM, so that $N \cong M$ as *R*-modules, since *x* is not a zero divisor in *M*. Let $N_n = N \cap Q^n M$. Then for every *n* there is an exact sequence $0 \to N/N_n \to M/Q^n M \to M'/Q^n M' \to 0$. Setting $g(n) = \ell(N/N_n)$, we get $g(n) - \chi_Q^M(n) + \chi_Q^{M'}(n) = 0$ for all large *n*. By Artin-Rees, (N_n) is a stable Q-filtration of *N*; since $N \cong M$, g(n) and $\chi_Q^M(n)$ have the same degree and leading coefficient; whence the result follows.

ヘロン ヘアン ヘビン ヘビン

The crucial result is then

Proposition

 $d(R) \ge \dim R.$

Lecture 4-21: Dimension theory, continuec

Proof.

By induction on d = d(R). If d = 0 then the length $\ell(R/I^n)$ is constant for all large n, whence $l^n = l^{n+1}$ for some n and $l^n = 0$ by Nakayama's Lemma, proved last term. Thus R is Artinian and dim R = 0, by another result last term. Now suppose that d > 0and let $P_0 \subset P_1 \subset \cdots \subset P_r$ be a strictly increasing chain of prime ideals in R. Let $x \in P_1, x \notin P_0$, let $R' = R/P_0$, and let x' be the image of x in R'. Then $x' \neq 0$ and R' is an integral domain, whence by the proposition we have $d(R'/(x')) \leq d(R') - 1$. Also if I' is the maximal ideal of R' then $R'/(I')^n$ is a homomorphic image of R/I^n for all *n* and thus has length at most that of the latter. Then d(R) > d(R'). Hence d(R'/(x')) < d(R) - 1 = d - 1. By inductive hypothesis the length of any strict chain of prime ideals in R'/(x') is at most d-1. But the images of the P_i for i > 1 form such a chain, whence r - 1 < d - 1, r < d. The result follows.

ヘロン ヘアン ヘビン ヘビン

10/1

As a beautiful and unexpected corollary we see that every Noetherian local ring has finite Krull dimension, as I implicitly indicated above. In particular, the height of any prime ideal P of R, defined to be the supremum of the lengths r of all strict chains of prime ideals $P_0 \subset \cdots \subset P_r = P$ ending at P, is finite; this is also equal to the Krull dimension of the local ring R_P . I deduce that the set of prime ideals in a Noetherian ring satisfies the descending chain condition.

I conclude by bringing minimal sets of generators into the picture. Let R be a Noetherian local ring of dimension d with maximal ideal I.

Theorem

There is an *I*-primary ideal of *R* generated by *d* elements x_1, \ldots, x_d , so that dim $R \ge \delta(R)$.

Proof.

I construct x_1, \ldots, x_d inductively so that any prime ideal containing x_1, \ldots, x_i has height at least *i*, for all $i \leq d$, as follows. Suppose that i > 0 and x_1, \ldots, x_{i-1} have been constructed. Let P_1, \ldots, P_s be the minimal prime ideals (if any) containing x_1, \ldots, x_{i-1} of height exactly i-1. Since $i-1 < d = \dim R$, which is the height of I, no P_i equals I. I claim that I is not contained in the union of the P_i . Indeed, if an ideal J is contained in a finite union $\bigcup_{i=1}^{n} Q_i$ of prime ideals Q_i , then $J \subseteq Q_i$ for some *i*. This is proved by induction on n, the case n = 1 being clear. If it holds for n - 1and $J \not\subseteq Q_i$ for all *i*, then for each *i* choose $x_i \in J, x_i \notin Q_i$ for $j \neq i$, If $x_i \notin Q_i$ for any *i*, then we are done; otherwise, the element $y = \sum_{i=1}^{n} \prod_{j=1, j \neq i}^{n} x_j$ lies in J but not in any Q_i , as desired.

ヘロン 人間 とくほ とくほ とう

Proof.

Now let $x_i \in I, x_i \notin \bigcup P_i$ and let Q be any prime ideal containing $(x_1, \ldots, x - i)$. Then Q contains some minimal prime P over (x_1, \ldots, x_{i-1}) . If $P = P_j$ for some J, then $x_i \in Q, x_i \notin P$, whence $Q \supset P$ and the height of Q is at least i; if $P \neq P_j$ for all j, then the height of P is at least i, whence again the height of Q is at least i. Thus every prime ideal containing (x_1, \ldots, x_i) has height at least i, as desired. Taking i = d, any prime ideal P containing (x_1, \ldots, x_d) has height at least d, whence it must equal I, the only prime ideal of this height. Hence $J = (x_1, \ldots, x_d)$ is I-primary, as desired.

イロン イ理 とくほ とくほ とう