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I will tighten the correspondence between ideals in polynomial
rings and algebraic sets, heading toward the Nullstellensatz, the
first major result of algebraic geometry.
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Let k be an infinite field. We have seen that to any ideal I of
Pn = k[x1, . . . , x = n] one can attach the set Z(I) ⊂ An of
common zeros of the polynomials in I, and conversely so any set
S ⊂ An one can attach the ideal I(S) of polynomials in Pn
vanishing on S. It is natural to hope that the maps
I → Z(I), S → I(S) would be inverses of each other, but we see at
once that this is false: the only subsets in the range of the first
map are Zariski closed ones, so that one must at least restrict to
closed subsets S. What is less obvious is that one needs to restrict
the ideals too: the principal ideals I1 = (x2) and I2 = (x) in P1
have Z(I1) = Z(I2) = {0}. Finally, one needs additional
hypotheses on k : the ideal J = (x2 + 1) in R[x ] has Z(J) = ∅.
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I address ideals first. Given an ideal I in any commutative ring R
we set rad I =

√
I = {x ∈ R : xn ∈ I for some n}. We say that I is

radical if
√

I = I. Then we have

Proposition, p.673
√

I is the unique smallest radical ideal containing I. If R = Pm, a
polynomial ring over a field k , then the ideal I(S) of any
algebraic set S is radical.

Indeed, if a,b ∈
√

I, with an,bm ∈ I, then the binomial theorem
(valid in any commutative ring) shows that all terms of
(a + b)n+m lie in I, whence a + b ∈

√
I. Also (ra)n ∈ I for any r ∈ R

and if cr ∈
√

I for some integer r , then crs ∈ I for some r , s, so that√
I is indeed an ideal and the smallest radical one containing I.

The second assertion is clear.
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Next we study the geometric side more closely.

Definition, p. 679
An algebraic set V ⊂ An is called irreducible, or a variety, if it is
not the union of two proper algebraic subsets.

Proposition, p. 680
An algebraic set V ⊂ Am is irreducible if and only if its ideal I(V )
is prime. Every algebraic set is uniquely the union V1 ∪ · · · ∪ Vn of
irreducible subsets such that Vi ̸⊆ Vj with i ̸= j.
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Proof.
Recall first that an ideal I of a commutative ring R is prime if we
have xy ∈ I if and only if x ∈ I or y ∈ I, for x , y ∈ R. Suppose first
that V = V1 ∪V2 is reducible. Since the Vi are proper subsets of V
there are f1, f2 /∈ I vanishing on V1,V2, respectively, so that f1f2
vanishes on V1 ∪ V2 = I and f1f2 ∈ I, so that I is not prime.
Conversely, if I is not prime, let f1f2 ∈ I but f1, f2 /∈ I. Then
V1 = Z(f1) ∩ V ,V2 = Z(f2) ∩ V are proper subsets (their
corresponding ideals containing polynomials not in I) whose
union is V , so that V is reducible. For the second assertion, let S
be the collection of nonempty algebraic subsets of Am that are
not finite unions of varieties. Choose S ∈ S with I = I(S) maximal;
this is possible since Pm is Noetherian. Then V0 = Z(I) is a minimal
element of S, which must be reducible, so that it is the union
S1 ∪ S2 of two proper algebraic subsets, whose ideals must be
strictly larger than I. The construction then forces S1, S2 to be
finite unions of varieties, whence so is S, a contradiction.
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Proof.
Thus every algebraic set is a finite union of varieties Vi ; we can
then omit varieties contained in others to arrive at a
decomposition V = V1 ∪ · · · ∪ Vn with Vi ̸⊆ Vj for i ̸= j. Given a
second such decomposition U1 ∪ · · · ∪ Ur of V , each Vi is the
union of its intersections with the Uj , forcing one of these
intersections to be all of Vi , so that Vi ⊆ Uj ; similarly every Ui lies
some Vk . But then we must have n = r and the Ui are a
permutation of the Vj , as claimed.

The Vi are called the irreducible components of V . Note that,
unlike connected components of topological spaces,
irreducible components can overlap; for example, the union of
two intersecting lines in R2 or C2 is an algebraic set whose
components are the lines.
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As a corollary, we note that the radical ideal I(V ) of any
nonempty algebraic set V = ∪m

i=1Vi is a finite intersection of
prime ideals I(Vi). We will later see that every proper radical
ideal is I(V ) for some V , so that every radical ideal in Pm is a
finite intersection of prime ideals. Conversely, and more
generally, it is easy to see that any intersection of prime ideals in
any ring is radical.

In fact, any radical ideal I in any ring R is the intersection of
prime ideals (Proposition 12, p. 674). This can be taken to be a
finite intersection if R is Noetherian.
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Finally, we need to assume more about the basefield k to get a
bijection between radical ideals in Pm and algebraic subsets of
Am. The additional hypothesis should come as no surprise.

Nullstellensatz: Theorem 32, p. 700
If k is algebraically closed, the maps I → Z(I), S → I(S) provide
inclusion-reversing inverse bijections between Zariski closed
subsets of Am and radical ideals in Pm.

We will prove this next time, using something called the Noether
Normalization Lemma. The German word Nullstellensatz means
“zero-places-theorem”.
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An ideal P is prime in a ring R if and only if the quotient ring R/P is
an integral domain, since xy = 0 in this quotient if and only if
x = 0 or y = 0. Thus the coordinate ring Pm/I(V ) of a variety
V ⊂ Am has a quotient field k(V ), called its (rational) function
field, which has a finite transcendence degree over k (being
finitely generated as a field). We define the dimension of V to be
this transcendence degree (p. 681). This definition agrees with
intuition. For example, a 0-dimensional subvariety of An is just a
point in this set, while a vector subspace S of kn has the same
dimension as a variety as it does as a vector space. To see this,
extend a basis v1, . . . ,vm of S to a basis b1, . . . ,bn of kn. The bi
are just linear combinations of standard basis vectors ei , so that
we can take the bi to be a set of algebraically independent
generators of the polynomial ring Pn. Then S is the set of
common zeros of the bj for j > m, regarded as linear
polynomials, so that the coordinate ring of S identifies with the
polynomial ring k[b1, . . . ,bm] and its quotient field is the rational
function field in m variables over k .
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The dimension of an algebraic set V is the maximum dimension
of any irreducible component Vi of V ; note that it is possible for
different components of V to have different dimensions, for
example if V is the union of a plane and a line intersecting it but
not lying in it. We will see later that a proper subvariety of a
variety V always has smaller dimension and that a variety Vd of
dimension d always admits a chain of subvarieties
V0 ⊂ V1 · · · ⊂ Vd such that dimVi = i.
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As a simple example going beyond vector subspaces (to which
we will return a number of times), take the subvariety V of A2

defined by the single equation x3 − y2 = 0. The polynomial
x3 − y2 generates the full ideal I(V ) of polynomials vanishing on
V (see the argument in Example 3, p. 660). A typical point on V
takes the form (a,b) ∈ k2 with a3 = b2; if a ̸= 0, then b ̸= 0 and
we can write a = (b/a)2,b = (b/a)3. Thus every point in V takes
the form (t2, t3) for a unique t ∈ k , for even if a = b = 0 we can
take t = 0. It follows that V is indeed irreducible, with function
field k(t) (the field of rational functions in one variable). The
coordinate ring k[V ] of V may be identified with the subring
k[t2, t3] of the polynomial ring P1 = k[t ] generated by t2 and t3.
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It follows that the the map ϕ from A1 to V sending t to (t2, t3),
which is clearly a morphism, is bijective, but not an isomorphism,
since its inverse is not a morphism. (The corresponding algebra
homomorphism, embedding k[t2, t3] into k[t ], also fails to be an
isomorphism.) Thus morphisms of varieties are more subtle than
linear maps between vector spaces, since inverses of linear
maps are always linear. If we remove the point (0, 0) from V we
get a set V ′ which is isomorphic to S = k∗. Now S is not given to
us as a variety and in fact is not a subvariety of A1.
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Nevertheless S is isomorphic to a subvariety W of A2, namely the
one given by the equation xy − 1 = 0; the isomorphism from W
to S is just the first coordinate projection, sending (x , y) to x . Thus
nonalgebraic subsets of An can still have the structure of
varieties, so that we cannot afford to limit attention to just
algebraic subsets of a fixed An. Ultimately we are forced, as in
manifold theory, to consider topological spaces covered by
open sets, each isomorphic to a variety, but which are not
themselves varieties. These are called schemes; I will say a bit
more about them later.
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