Lecture 4-18: Dimension of Noetherian local rings

April 18, 2025

Lecture 4-18: Dimension of Noetherian loc

< ≧ > < ≧ > < ≧ > < ≧</p>
April 18, 2025

Today I digress for a second time, interrupting the algebraic geometry that I have been doing to define the dimension of a general Noetherian ring in three ways and show that they are equivalent. I will follow the exposition in Chapter 11 of Atiyah and MacDonald's book introduction to Commutative Algebra (Wiley, 1969).

・ロト ・同ト ・ヨト ・ヨト

April 18, 2025

First let $R = \bigoplus_{n=0}^{\infty} R_n$ be a graded Noetherian ring. I will assume that the subring R_0 is also Noetherian and R is generated as an R_0 -algebra by finitely many elements x_1, \ldots, x_s , which I take to be homogeneous, so that $x_i \in R_{k_i}$ for some positive integer k_i . (These properties actually follow automatically from the assumption on R). Let $M = \bigoplus_{n=0}^{\infty} M_n$ be a finitely generated graded R-module, so that $R_n M_m \subset M_{n+m}$ for all m, n and M is generated by finitely many homogeneous elements, say m_1, \ldots, m_t , with $m_i \in M_{r_i}$. Then M_n is finitely generated as an R_0 -module, by the monomials $g_j(x)m_j$, where $g_j(x)$ is a monomial in the x_j of total degree $n - r_j$.

3/1

イロン イロン イヨン イヨン 三日

Let λ be an additive (integer-valued) function on the class of finitely generated R_0 -modules, so that (by definition) $\lambda(B) = \lambda(A) + \lambda(C)$ whenever $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of R_0 -modules. (In the applications to algebraic geometry, R_0 will usually be a field k and $\lambda(A)$ will simply be the dimension of A over k. In what follows R_0 will turn out more generally to be an Artinian ring and $\lambda(A)$ will be the length of Aas an R_0 -module, defined below). Thus $\lambda(M_n)$ is defined for all M_n as above. A handy way to keep track of all the $\lambda(M_n)$ at once is

to form the Poincaré series $P(M, t) = \sum_{n=0}^{\infty} \lambda(M_n) t^n$; this is a power

series with coefficients in \mathbb{Z} , regarded as a function of t. Then we have

Theorem (Hilbert-Serre)The function P(M, t) is a rational function of t of the form $\frac{f(t)}{\prod_{i=1}^{s}(1-t^{k_i})}$,where $f(t) \in \mathbb{Z}[t]$.Lecture 4-18: Dimension of Noetherian locApril 18, 2025

Proof.

By induction on s, the number of generators of R over R_0 . In the base case s = 0 we have $R_n = 0$ for all large n > 0, whence $M_n = 0$ for all large enough n. Here $P(M, t) \in \mathbb{Z}[t]$, so the theorem follows. Now take s > 0 and suppose that the theorem holds for s - 1. Multiplication by the last generator x_s is an R_0 -module homomorphism from M_n to M_{n+k_s} for all n, so one gets an exact sequence

$$0 \to K_n \to M_n \to M_{n+k_s} \to L_{n+k_s} \to 0$$

where the third map is multiplication by x_s .

ヘロン ヘ回 とくほ とく ヨン

April 18, 2025

Proof.

Then $K = \oplus K_n$, $L = \oplus L_n$ are both finitely generated *R*-modules, being subquotients of *M*, and both are sent to 0 by x_s , so both are $R_0[x_1, \ldots, x_{s-1}]$ -modules. Applying λ and breaking the exact sequence above into short exact sequences we get $\lambda(K_n) - \lambda(M_n) + \lambda(M_{n+k_s}) - \lambda(L_{n+k_s}) = 0$; multiplying by t^{n+k_s} and summing with respect to *t* we get $(1 - t^{k_s})P(M, t) = P(L, t) - t^{k_s}P(K, t) + g(t)$ for some polynomial g(t) of degree at most $k_s - 1$. Applying the inductive hypothesis the result follows.

・ロト ・同ト ・ヨト ・ヨト … ヨ

As a rational function of t, P(M, t) has a pole at t = 1; the order of this pole (possibly 0), is the smallest k such that $(1 - t)^k P(M, t)$ is defined at t = 1. It is denoted d = d(M) and provides the first of our three notions of dimension. A special case is

Corollary

If all $k_i = 1$ then for all sufficiently large n, the Hilbert function $\lambda(M_n)$ is a polynomial in n with rational coefficients of degree d-1 (taking the degree of the 0 polynomial to be -1). If $d \ge 1$, the Hilbert polynomial $\lambda(M_n)$ has coefficients that are integers divided by (d-1)!

We have $\lambda(M_n) = \text{coefficient of } t^n \text{ in } f(t)(1-t)^{-s}$. Cancelling powers of 1-t we may assume that s = d and $f(1) \neq 0$. Setting $f(t) = \sum_{k=0}^{N} a_k t^k$, since $(1-t)^{-d} = \sum_{k=0}^{\infty} {d+k-1 \choose d-1} t^k$, we get

$$\lambda(M_n) = \sum_{k=0}^N a_k \binom{d+n+k-1}{d-1}$$

for all $n \ge N$ and the sum on the right is a polynomial in n with leading term $(\sum a_k)n^{d-1}/(d-1)!$ as desired (we may assume d > 0). The assertion about the coefficients follows from the sum.

8/1

Returning to the exact sequence above, replace x_s by any $x \in R_k$ which is not a zero divisor in M. Then the module K in the proof of the theorem is 0 and we get d(L) = d(M) - 1. Thus if $x \in R_k$ is not a zero divisor in M then d(M/xM) = d(M) - 1. Now specialize down to the case where R_0 is an Artinian ring and $\lambda(M)$ is the length $\ell(M)$ of the finitely generated module M (that is, the integer *n* in any maximal strictly increasing chain $M_0 = 0 \subset \cdots \subset M_n = M$ of submodules of M; it is easy to check that this *n* is always finite). As an example, let R_0 be any Artinian ring and take $R = R_0[x_1, \ldots, x_s]$ to be a polynomial ring in x_1, \ldots, x_s over R_0 . Then R_n , the *n*th graded piece of R, is free over R_0 with basis consisting of the monomials $x_1^{m_1} \cdots x_s^{m_s}$ with $\sum m_i = n$. There are $\binom{s+n-1}{s-1}$ such monomials; accordingly $P(R, t) = \lambda(1-t)^{-s}$, where λ is the length of R_0 as a module over itself.

9/1

・ロト ・同ト ・ヨト ・ヨト … ヨ

Now let R be any Noetherian local ring with maximal ideal I. Let Q be an *I*-primary ideal. In order to apply the preceding results, I need to replace R by a graded ring. I take this ring to be $G(R) = G_Q(R) = \bigoplus_{n=0}^{\infty} G_n(R) = \bigoplus_{n=0}^{\infty} Q^n / Q^{n+1}$. Multiplication is defined as follows: if \bar{x}_m, \bar{x}_n lie in $Q^m/Q^{m+1}, Q^n/Q^{n+1}$, respectively, then $\bar{x}_m \bar{x}_n$ is taken to be the coset of $x_m x_n$ in $Q^{m+n/2} Q^{m+n+1}$, for any representatives x_m, x_n of \bar{x}_m, \bar{x}_n , respectively. One readily checks that the definition does not depend on the choice of representatives. If Q is generated by x_1, \ldots, x_s , then G(R) is generated over $G_0(R) = R/Q$ by the images of the x_i in Q/Q^2 , whence G(R) is Noetherian by the Hilbert basis theorem. Next let M be a finitely generated R-module and take (M_n) to be a stable Q-filtration of M. This means that $M_0 = M$, the M_n are submodules of M with $M_n \supseteq M_{n+1}$, and $QM_n \subseteq M_{n+1}$ for all n, with equality for all *n* sufficiently large.

3

10/1

ヘロン 人間 とくほ とくほ とう

I can then form $G(M) = \bigoplus_{n=0}^{\infty} G_n(M) = \bigoplus_{n=0}^{\infty} M_n/M_{n+1}$; this is a graded G(R)-module in a natural way. It is also Noetherian as a module: since there must be some n_0 with $M_{n_0+r} = Q^r M_{n_0}$ for all $r \ge 0$, G(M) is generated by $\sum_{n \le n_0} G_n(M)$ and each $G_n(M)$ is a finitely generated module over $G_0(R) = R/Q$; moreover, each $G_n(M)$ is of finite length λ_n over the Artinian local ring R/Q. I then have

11/1

・ロト ・ 同ト ・ ヨト ・ ヨト …

Proposition

Let *R* be a Noetherian local ring with maximal ideal *I* and *Q* an *I*-primary ideal. Let *M* be a finitely generated *R*-module and (M_n) a stable *Q*-filtration of *M*. Then

- M/M_n has finite length ℓ_n for all $n \ge 0$.
- 2 For all sufficiently large *n* this length ℓ_n is a polynomial g(n) of degree at most *s*, where *s* is the least number of generators of Q.
- Solution The degree and leading coefficient of g(n) depend only on M and Q, not on the filtration (M_n) .

Proof.

Define G(R), G(M) as above, so that $G_0(R) = R/Q$ is an Artinian local ring. As noted above, each $G_m(M) = M_m/M_{m+1}$ has finite length λ_m , whence $\ell_n = \sum_{m \le n-1} \lambda_m$ is also finite. If x_1, \ldots, x_s generate Q, then then their images in Q/Q^2 generate G(R) over R/Q with each image of degree 1. Hence by the corollary one has $\lambda_n = f(n)$ is a polynomial in *n* of degree at most s - 1 for all large n. Since $\ell_{n+1} - \ell_n$ is a polynomial of degree at most s - 1 for all large n, it follows that ℓ_p is a polynomial of degree at most s for all such n. Given another stable Q-filtration (M_n) of M with corresponding polynomial $\tilde{g}(n)$, it is easy to check that there is n_0 with $M_{n+n_0} \subset M_n, M_{n+n_0} \subset M_n$ for all n, so that the ratio $g(n)/\tilde{g}(n)$ approaches 1 as $n \to \infty$. Then g, \tilde{g} have the same degree and leading coefficient.

ヘロン ヘアン ヘビン ヘビン

The polynomial g(n) corresponding to the stable filtration $(Q^n M)$ of M is denoted $\chi_Q^M(n)$, so that $\chi_Q^M(n)$ is the length $\ell(M/Q^n M)$ of $M/Q^n M$ for all large n. If M = R we write $\chi_Q(n)$ for $\chi_Q^R(n)$. This is a polynomial of degree at most s, the least number of generators of Q. Next time I will show that the degree (but not the leading coefficient) of this polynomial is independent of the choice of I-primary ideal Q.

April 18, 2025