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Setting aside primary decompositions for the moment, I return to
the commutative algebra leading directly to algebraic
geometry. I have defined the dimension of a variety to be the
transcendence degree of its function field. I also in effect gave
another definition, valid for any algebraic set V , namely the
maximum number of algebraically independent elements in the
coordinate ring k[V ]. I now give a more general definition of
dimension for an arbitrary Noetherian ring, agreeing with this
one for coordinate rings, using prime ideals rather than field
theory. It will enable me to show among other things that a
proper subvariety of a variety always has smaller dimension. I will
then study tangent spaces of algebraic sets.
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Let R be a ring (as always commutative).

Definition, p. 750
The Krull dimension of R, denoted dimR, is the largest integer n
such that there is a chain P0 ⊂ P1 · · · ⊂ Pn of distinct prime ideals
of R; if such chains exist for arbitrarily large n, then we say that R
has infinite dimension and write dimR = ∞.

In the special case where R = k[V ] is the coordinate ring of a
variety V ⊆ Am, any chain P0 ⊂ · · · ⊂ Pn as in this definition
corresponds via the Nullstellensatz to a chain V0 = V ⊃ · · · ⊃ Vn
of distinct subvarieties of V in Am.
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Lemma; cf. Exercise 17, p. 704
If S is an integral extension of R then the Krull dimensions of R and
S coincide.
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Proof.
Given any chain P0 ⊂ · · · ⊂ Pn of distinct prime ideals in R, we
can lift it to a chain Q0 ⊂ · · · ⊂ Qn of prime ideals in S with
Qi ∩P = Pi by Corollary 50 on p. 720 (proved last time); the Qi are
then distinct because the Pi are. There cannot be distinct prime
ideals Q ⊂ Q′ of S with the same contraction P in R, for if so (by
passing to R/P), we would have a nonzero prime ideal Q in an
integral extension S′ of an integral domain R′ contracting to 0;

but then if x ∈ Q, x ̸= 0, satisfies the equation xn +
n−1∑
i=0

rix i = 0 with

the ri in R′, then we cancel a power of x to get r0 ̸= 0, forcing
r0 ∈ Q ∩ R′, a contradiction. Hence dimR = dim S, as claimed.
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The same proof also shows that if the ring R is such that all
saturated chains P0 ⊂ · · · ⊂ Pn of prime ideals, that is, all strictly
increasing chains of primes such that no distinct prime ideals can
be inserted between two consecutive terms, or at the beginning
or end, have length n, then the same property holds for any
integral extension S of R that is an integral domain with the same
n, equal to the common Krull dimension of R and S. Next I will
show that polynomial rings over fields satisfy this property.
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More generally, one has

Theorem
Let V ⊂ An be a variety of dimension d. Then any saturated
chain P0 ⊂ · · · ⊂ Pm of prime ideals in k[V ] has length m = d.
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Proof.
By induction on d. If d = 0, then V must be a single point and
the result is obvious. In general, by Noether normalization, the
ring k[V ] is a finite integral extension of a polynomial ring
Pd = k[y1, . . . , yd ]; since I have previously observed that if all
saturated chains of prime ideals in Pd have the same length,
then the same is true of k[V ], with the same length. So I am
reduced to the case where k[V ] ∼= Pd . By repeated applications
of the definition of primeness, any minimal nonzero prime ideal
of k[V ] contains an irreducible polynomial f , and then it must in
fact be the principal ideal (f ), which is indeed prime by unique
factorization. Enlarging the singleton set {f} to a transcendence
base {f1 = f , . . . , fd} of k(V ), I note that {f2, . . . , fd} is a
transcendence base of the quotient field of k[V ]/(f ). An appeal
to the induction hypothesis then completes the proof.
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In particular, applying the Nullstellensatz bijection, I get that any
algebraic set V of km of dimension d admits a chain of
subvarieties V0 ⊂ · · · ⊂ Vd with dimVi = i. Also, any proper
subvariety of a variety V of dimension d has strictly smaller
dimension, since moding out by a nonzero prime ideal always
lowers the transcendence degree of the field of functions. On
the other hand, it is not true in general that any two saturated
chains of prime ideals in k[V ] have the same length if V is not a
variety (think of an algebraic set with two irreducible
components of different dimensions),
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Using more advanced techniques, it can be shown that while
dimR need not be finite for an arbitrary Noetherian ring R one
has dimR < ∞ if R is Noetherian local. I will prove this later.
Equivalently, for any fixed prime ideal P of R, there is an upper
bound on the length of any chain of distinct prime ideals ending
at P. The least such upper bound is called the height of P.
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In particular subvarieties of An of dimension n − 1 have their
defining ideals generated by single irreducible polynomials; such
varieties are called hypersurfaces. More generally, the zero locus
of any single polynomial f ∈ Pn is such that all of its irreducible
components have dimension n − 1; there is one such
component for every distinct irreducible factor of f .
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Varieties have many features in common with smooth manifolds;
in fact, the same word “variété” is used in French to mean both
an algebraic variety and a differentiable manifold (with the
adjective “differentiable” sometimes added to it for clarity in the
latter case). In particular, varieties, like manifolds, have tangent
spaces at each of their points. Unlike manifolds, however the
dimension of the tangent space to a variety at a point need not
match the dimension of the variety; at some bad points the
tangent space has higher dimension. To see how this works, start
with a construction quite reminiscent of one in Math 126. Recall
first that partial differentiation with respect to any variable xi is
defined in any polynomial ring Pn and satisfies the usual sum and
product rules for differentiation. Given f ∈ Pn,a ∈ An set

Dv f (x1, . . . , xn) =
n∑

i=1

∂f
∂xi

(a)xi , a linear polynomial (see p. 723).
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Definition, p. 724
Given an algebraic set A with ideal I and a point v ∈ V , the
tangent space TaA to A at a is the vector space Z(I′) where I′ is
the ideal generated by Daf as f runs through I.

The product rule shows at once that I′ is already generated by
the Daf as f runs through a set f1, . . . , fm of generators of I.
Defining the Jacobian matrix J(av) of the fi with respect to the
variables x1, . . . , xn, so that the ijth entry of J is ∂fi

∂xj
(a), we can

identify TaA as the kernel of J(a).
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Given a choice of r rows and r columns of J(a), the determinant
of the corresponding minor matrix of J(a) is a polynomial
function, which is either identically 0 or not. Choosing r as large
as possible so that some choice of r rows and columns makes
this polynomial not identically zero, we see that the rank of J(a)
is r on an open subset N of A and strictly less than r on the
complement S of N in A. The points in U are called nonsingular;
those in S are called singular. Thus varieties differ from manifolds
in that they can have singular points. In Math 126 we would say
of any such point p that the tangent space at p is undefined;
now it is always defined but sometimes has dimension higher
than expected. As an example, consider again the curve C in
A2 defined by the equation f = x3 − y2 = 0. The gradient ∇f of f
vanishes only at the point (0, 0) ∈ C; so this is the unique singular
point of C. In particular, C is not isomorphic to the affine line A1.
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Proposition, p. 724
For any algebraic set A and any a ∈ A, there is a natural
isomorphism from the dual space (TaA)∗ to the quotient Ma/M

2
a

of the maximal ideal ma ⊂ k[V ] of functions vanishing at a by its
square.

The function Da has range kn and vanishes on constant functions
and on functions in M2

a, so it induces an isomorphism from
Ma/M2

a to a subspace of (kn)∗. Restricting to TaA∗ we get a
surjection D from Ma to TaA∗, whose kernel is easily seen to be
I + M2

a. The given isomorphism follows at once; I can also replace
mav here by the maximal ideal ma,A of the local ring Oa,A
defined last time. Next time I will show that the tangent space at
a generic point has dimension equal to that of the variety.
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