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Continuing the digression, I now give some examples of primary
decompositions and show how they work for modules. I then
extend the technique of localization to modules.
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First some examples in polynomial rings: if k is a field, then the
ideal I = (x , y)2 ⊂ k[x , y ] is primary but not irreducible, being the
intersection of (x) + I = (x , y2) and (y) + I = (x2, y) (p. 684). The
ideal J = (x2, xy) admits two primary decompositions, namely
(x) ∩ (x , y)2 and (x) ∩ (x2, y) (p. 685). The associated primes are
(x) and

√
(x , y)2 = (x , y); the only isolated prime is (x), so that a

prime ideal P of k[x , y ] contains I if and only if it contains (x). The
(x)-primary component of I corresponding to this ideal occurs in
both primary decompositions; the (x , y)-primary component, by
contrast, differs between the two decompositions. The
associated variety of (x) is the y-axis; it contains that of (x , y),
which is just the origin. In general, the associated varieties of the
embedded primes disappear in some sense, being contained in
the associated varieties of the isolated primes.
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Now let M be a module over a general commutative ring R. An
element x of R is said to be a zero divisor in M if scalar
multiplication by x is not injective on M; similarly x is said to be
nilpotent in M if multiplication by x acts nilpotently on M. We say
that M is primary if every zero-divisor in M is nilpotent; more
generally, if N is a submodule of M, then N is primary in M if M/N
is primary. If N is primary in M then (N : M) := {x ∈ R : xM ⊆ N} =
Ann M/N is a primary ideal of R, so that its radical P =

√
(N : M)

is prime; we say that N is P-primary in M in this case.
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A primary decomposition of N in M is then a finite intersection
∩Ni of primary submodules of M equalling N. It is called minimal
if the radicals Pi =

√
(Ni : M) are distinct and no Ni contains the

intersection of the others. In this case the primes Pi are said to
belong to N in M. Once again the Pi not containing any other Pj
are called isolated while the other Pi are called embedded.
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Now if R is Noetherian and M is finitely generated over R, then M
is Noetherian as a module, so that it satisfies the ascending
chain condition on submodules, or equivalently every
submodule of M is finitely generated. To prove this it suffices to
show that the free module Rn is Noetherian; this follows easily by
induction on n and the short exact sequence
0→ R → Rn → Rn−1 → 0. Then we have

Primary Decomposition Theorem for modules
Any submodule of a finitely generated module M over a
Noetherian ring R has a primary decomposition.
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This is proved in the same way as the corresponding result for
ideals. One first defines the notion of irreducible submodule of M
as one not realizable as the intersection of two submodules
properly containing it (NOT the same as our previous definition of
irreducible module, which we will have no further occasion to
use). Then every submodule is a finite intersection of irreducible
submodules and every irreducible submodule is primary, so the
result follows.
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As before the set of minimal prime ideals belonging to a fixed
submodule N of M with a primary decomposition in M (those not
containing other such prime ideals) is uniquely determined by M
and N. These prime ideals may be described directly: they are
the associated primes of M, that is, annihilators in R of some
element of M that are prime ideals (see p. 670, in the exercises
after Section 15.1). Denote by Ass M the set of associated primes
of M. We then have

Theorem 1
Let M be finitely generated over a Noetherian ring R. Then Ass M
is finite and consists of primes containing the annihilator Ann M
of M. It includes all primes minimal among primes containing
Ann M. Moreover, the union of the associated primes of M
consists of 0 and the set of zero-divisors of M.
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To prove the first assertion I first prove an auxiliary result given
below, of interest in its own right. I then extend localization of
rings, discussed in the lecture on April 7, to modules, and use
that to prove the rest of the theorem. Throughout M will be a
finitely generated module over a Noetherian ring R.

Theorem 2
There is a finite chain of submodules M0 = 0 ⊂ M1 ⊂ · · · ⊂ Mn = M
such that each quotient Mi/Mi−1

∼= R/Pi for some prime ideal Pi .
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Proof.
I first show that M has a submodule isomorphic to R/P1 for some
prime P1. Choose m ∈ M whose annihilator P =Ann m is maximal
among annihilators of nonzero elements of M. If ab ∈ P,a /∈ P,
then Ann am, which contains P, must equal it by maximality,
forcing bm = 0 and b ∈ P, so P1 = P is indeed prime. Letting
M1 = Rm,M′ = M/M1, choose nonzero m2 ∈ M′ whose
annihilator P2 is maximal among annihilators of elements and
thus prime. Letting M2 be the preimage of Rm2 in M, continue in
this way to produce a chain of submodules M1 ⊂ M2 ⊂ · · · . The
chain terminates after finitely many steps with Mn = M, since M is
Noetherian, and has the desired property.
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It is easy to check that given a short exact sequence
0→ M′ → M → M”→ 0 of R-modules we have
Ass M ⊂Ass M′∪Ass M”. Given a prime ideal P, the annihilator of
any nonzero x ∈ R/P is P; so the first assertion of Theorem 1
follows (it is clear that any P ∈Ass M contains Ann M). Given a
zero divisor x , lying in say Ann m for nonzero m ∈ M, replace m as
above by a nonzero multiple of itself with maximal annihilator
among annihilators of such multiples. Then P is prime, as we saw
above, and indeed an associated prime of M; conversely any
associated prime clearly consists of zero divisors.
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As promised above, I now extend localization to modules. Let D
be a multiplicatively closed subset of a general commutative
ring R and M an R-module.

Definition
The localization D−1M consists of equivalence classes of ordered
pairs (d,m) ∈ D ×M subject to the relation (d,m) ∼ (e,n) if there
is d ′ ∈ D with d ′(em− dn) = 0. Two such pairs (d,m), (e,n) are
added and subtracted as for D−1R. We make D−1M into a D−1R
module via the recipe (d, r)(e,m) = (de, rm). If P is a prime ideal
of R, then MP , the localization of M at P, denotes D−1M with
D = R − P. It is a module over RP .
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For an ideal I in a ring R and a multiplicatively closed subset D,
we have D−1I = D−1R if and only if D intersects I. The
corresponding fact for modules is that given a submodule N of a
finitely generated module M, we have D−1N = D−1M if and only
if some d ∈ D lies in (N : M). Indeed, it is clear that this condition
is sufficient; conversely, if D−1N = D−1M and m1, . . . ,mn generate
M, then there are d1, . . . ,dn ∈ D with dimi ∈ N and
d1 . . .dnM ⊂ N. Then it is not difficult to check that primary
decompositions of modules behave well under localization, so
that if N is a submodule of an R-module M admitting a
decomposition ∩Ni with Ni being Pi-primary in R and if D is
multiplicatively closed in R, then a primary decomposition of
D−1N in D−1M is given by ∩D−1Ni , the intersection taking place
over the Ni with D not intersecting Pi .
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Finally I prove the second assertion in Theorem 1. Note first that
given any ideal I in a commutative ring R, there are prime ideals
P of R minimal over I by Zorn’s Lemma, since the prime ideals of
R containing I are partially ordered by reverse inclusion and the
intersection of a chain of prime ideals is prime. If moreover R is
Noetherian, then there are only finitely many minimal primes
containing a fixed ideal I: these are the associated primes of R/I.
If in addition M is finitely generated over R and P is a minimal
prime over Ann M, then we can localize R and M at P. The set
Ass MP is nonempty and PP is the only prime ideal in RP
annihilating an element of MP , so we must have P ∈Ass M, as
claimed.
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