HW \#8, DUE 3-3

1. Let A be a commutative ring. Show that $p \in A[x], p \neq 0$ is a zero divisor in $A[x]$ if and only if that is $a \in A, a \neq 0$ with $a p=0$. (Look at a polynomial q of least possible degree such that $p q=0$). Generalize this result to $A\left[x_{1}, \ldots, x_{n}\right]$.
2. Let K be an algebraically closed field of characteristic 0 and let $V \subset K^{2}$ be our old friend the variety with equation $x^{2}=y^{3}$. Show that the maximal ideal $M_{(1,1)}$ of the coordinate ring $K[V]$ at the point $(1,1)$ is not the radical of any principal ideal.
3. Again let K be algebraically closed (but of arbitrary characteristic). Show that the subvariety of K^{2} with equation $y^{3}=x^{5}$ has a singularity at the origin that is resolved by two blowups.
4. Let C be the rational quartic curve in \mathbb{P}^{3}, consisting of all points with projective coordinates $\left(s^{4}, s^{3} t, s t^{3}, t^{4}\right)$ for some $s, t \in K, s, t$ not both 0 . Find a set of four generators of the (homogeneous) ideal I of C and prove that I cannot be generated by three elements.
5. Let A be a commutative ring, I an ideal of A. Give A the standard I-filtration, taking $A_{n}=I^{n}$, and assume that $\cap_{n} I^{n}=0$ and that the graded ring $G=G(A)$ is an integral domain. Show that A is also an integral domain.
