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A number field L is a finite extension of Q. The goal of this course is to define a
subring OL ⊂ L, that we call the ring of algebraic integers of L, and to study the extent
to which its properties generalize those of the usual ring of integers Z ⊂ Q. This is the
beginning of the subject of algebraic number theory, which was invented by Kummer in the
1840’s in order to attack the problem of supplying a proof of Fermat’s Last Theorem. We
will return to this problem at the end of the course.

The schedules for this course recommend several textbooks, but my personal favourite
is Marcus’ textbook Number Fields.

Non-examinable material, when it appears, is relegated to a subsection labelled with
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1 The ring of algebraic integers

Recall that a field extension L/K is a pair of fields K ⊂ L. In this case L is a K-vector
space and the number [L : K] = dimK L is called the degree of the field extension L/K. We
say that the extension L/K is finite if its degree is finite.

Definition 1.1. A number field is a finite extension L/Q.

Here are two ways to construct number fields. If α ∈ C is an algebraic number, then
Q(α) (the smallest field extension of Q containing α) is a number field. For example, Q(i)
is a number field (an example of an imaginary quadratic field).

Alternatively, if K is a number field and and f(x) ∈ K[x] is an irreducible monic
polynomial, then L = K[x]/(f(x)) is a number field, with [L : K] = deg f . Observe that
in the first case our number field comes with a distinguished embedding in the complex
numbers, while in the second case it does not. An important theme throughout this lecture
course will be the role played by the set of all embeddings of a number field in the complex
numbers.

In this course we will associate to any number field L a subring OL ⊂ L called the
ring of integers of L. This will generalize the inclusion Z ⊂ Q.

Definition 1.2. 1. Let L/K be a field extension. An element α ∈ L is said to be algebraic
over K if there exists a monic polynomial f(x) ∈ K[x] such that f(α) = 0.

2. Let L/Q be a field extension. An element α ∈ L is called an algebraic integer if there
exists a monic polynomial f(x) ∈ Z[x] such that f(α) = 0. We write OL ⊂ L for the
subset of algebraic integers.

Definition 1.3. If L/K is a field extension and α ∈ L is algebraic over K, then the minimal
polynomial of α over K is by definition the monic polynomial fα(x) ∈ K[x] of least degree
such that fα(α) = 0.

The minimal polynomial is well-defined because we can apply the Euclidean algorithm
in the ring K[x]: if fα(x), gα(x) are two polynomials with this property, then write fα(x) =
q(x)gα(x) + r(x) for some q(x), r(x) ∈ K[x] with deg r < deg gα. Then setting x = α gives
r(α) = 0, hence r = 0, hence q = 1 (as deg fα = deg gα).

Lemma 1.4. Let L/Q be a field extension, and let α ∈ L be an algebraic integer.

1. The minimal polynomial fα(x) of α over Q is contained in Z[x]. In other words, fα(x)
has integer coefficients.

2. If g(x) ∈ Z[x] is any polynomial such that g(α) = 0, then we can find q(x) ∈ Z[x] such
that g(x) = q(x)fα(x).

3. Let F : Z[x] → L be the ring homomorphism defined by F (f(x)) = f(α). Then the
kernel of F equals the principal ideal (fα(x)) of Z[x].
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Proof. We recall (from IB Groups, Rings and Modules) that if f(x) = a0 + a1x + · · · +
anx

n ∈ Z[x], then the content c(f) is defined to be the greatest common divisor of a0, . . . , an.
Moreover, Gauss’ lemma states that if f(x), g(x) ∈ Z[x], then c(fg) = c(f)c(g).

Let f(x) ∈ Z[x] be a monic polynomial such that f(α) = 0. Applying the Euclidean
algorithm in Q[x], we can find q(x), r(x) ∈ Q[x] such that f(x) = q(x)fα(x) + r(x) and
deg r < deg fα. Specializing to x = α, we see r(α) = 0, hence r = 0. Let n,m be
positive integers such that nq(x), mfα(x) ∈ Z[x]. Then Gauss’ lemma says nm = c(nmf) =
c(nqmfα) = c(nq)c(mfα). Since q and fα are both monic, we have c(nq)|n and c(mfα)|m.
This is possible only if c(nq) = n and c(mfα) = m, implying that in fact fα(x) ∈ Z[x].

Let g(x) ∈ Z[x] be a non-zero polynomial such that g(α) = 0. Then we can write
g(x) = q(x)fα(x) + r(x) in Q[x] with deg r < deg fα. Again we see r = 0. Let n ≥ 1 be
an integer such that nq(x) ∈ Z[x]. Then we get c(ng) = nc(g) = c(nqfα) = c(nq), hence
n|c(nq), hence q(x) ∈ Z[x], as desired.

The third part of the lemma is simply a reformulation of the second part.

Corollary 1.5. OQ = Z.

Proof. If α ∈ Q, its minimal polynomial is fα(x) = x− α. Using the lemma, we see that α
is an algebraic integer if and only if α ∈ Z.

Proposition 1.6. Let L/Q be a field extension. Then OL is a ring.

Proof. It is clear that 0, 1 ∈ OL and that if α ∈ OL, then −α ∈ OL. The hard part is to
show that if α, β ∈ OL, then αβ ∈ OL and α + β ∈ OL.

We first observe that the subring Z[α] ⊂ L is a finitely generated Z-module. Indeed,
by definition, it is generated by the infinitely many elements 1, α, α2, . . . . Let d = deg fα.
Since fα(x) is monic and fα(α) = 0, we see that αd ∈

∑d−1
i=0 Zαi. By induction this implies

αn ∈
∑d−1

i=0 Zαi for all n ≥ d, showing that Z[α] is in fact generated by the finitely many
elements 1, α, . . . , αd−1.

Now choose α, β ∈ OL and let d = deg fα, e = deg fβ. In the same way, we see that
Z[α, β] is generated as a Z-module by the elements αiβj where 0 ≤ i ≤ d− 1, 0 ≤ j ≤ e− 1.
Since Z[αβ] ⊂ Z[α, β], we see that Z[αβ] is a finitely generated Z-module. It can therefore be
generated by some sequence 1, αβ, (αβ)2, . . . , (αβ)n−1, implying the existence of a relation
(αβ)n = an−1(αβ)n−1 + · · ·+ a1αβ + a0 for some integers a0, . . . , an−1. Equivalently, αβ is a
zero of the polynomial xn − an−1x

n−1 − · · · − a0 ∈ Z[x]. This shows that αβ is an algebraic
integer. The same argument, using the fact that Z[α + β] ⊂ Z[α, β] is a finitely generated
Z-module, shows that α + β is an algebraic integer.

Accordingly, we call OL the ring of algebraic integers of L.

Lemma 1.7. Let L be a number field and let α ∈ L. Then there exists an integer n ≥ 1
such that nα ∈ OL.

Proof. Let f(x) ∈ Q[x] be a monic polynomial of degree d with α as a root. Then we can
find an integer n ≥ 1 such that the polynomial g(x) = ndf(x/n) has integer coefficients.
The polynomial g(x) is monic, and satisfies g(nα) = 0, so nα ∈ OL.
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2 Embeddings in C
Let L be a number field.

Definition 2.1. A complex embedding of L is a field homomorphism σ : L→ C.

Note that if σ is a complex embedding, then σ is injective and σ|Q is the usual
embedding Q→ C.

Proposition 2.2. Let L/K be an extension of number fields, and let σ0 : K → C be a
complex embedding. Then the number of distinct embeddings σ : L→ C such that σ|K = σ0

is equal to the degree [L : K].

Proof. We use induction on [L : K]. The case [L : K] = 1 is trivial since L = K in this
case. In general, choose α ∈ L−K, giving a tower of extension L/K(α)/K. The tower law
from Part II Galois theory states that [L : K] = [L : K(α)][K(α) : K]. In particular we
have [L : K(α)] < [L : K]. If [K(α) : K] < [L : K] then we’re done by induction. So we can
suppose without loss of generality that L = K(α).

Let f(x) ∈ K[x] denote the minimal polynomial of α over K. Then there is an
isomorphism K[x]/(f(x))→ L, x 7→ α. It follows that to give a homomorphism σ : L→ C
extending σ0 is to give a root of σ0f(x) in C. We therefore just need to explain why the
polynomial σ0f(x) has distinct roots in C. Equivalently, we must explain why σ0f(x) and
σ0f

′(x) have no roots in common. However, this follows from the fact that f(x) and f ′(x)
together generate the unit ideal in K[x] (as f(x) is irreducible).

An important special case of the proposition is where L = Q(α) is generated by a
single element, with minimal polynomial fα(x) ∈ Q[x]. In this case the embeddings L→ C
are in bijection with the roots of fα(x) in C.

If L is a number field and σ : L→ C is a complex embedding, then we write σ : L→ C
for the complex embedding given by the formula σ(α) = σ(α) (i.e. complex conjugation of
σ(α)). There are two possibilities: either σ = σ, in which case σ takes values in R, or
σ 6= σ. We write r for the number of embedding σ : L → R, and s for the number of pairs
σ, σ : L→ C of embeddings with σ 6= σ. Then r + 2s = [L : Q].

Example. If d ∈ Z − {0, 1} is a square-free integer, then the polynomial x2 − d ∈ Q[x] is
irreducible. The corresponding quadratic field is L = Q[x]/(x2 − d) = Q(

√
d). We call it a

real quadratic field if d > 0 (in which case r = 2, s = 0) or an imaginary quadratic field if
d < 0 (in which case r = 0, s = 1).

Example. Let m ∈ Z be a cube-free integer, m 6= 0, 1. Let L = Q[x]/(x3 − m). Then
r = 1, s = 1, as follows from the fact that m has 1 real cube root and two complex cube
roots in C.

One application of complex embeddings is to understand the trace and norm.

Definition 2.3. Let L/K be an extension of number fields. Let α ∈ L, and think of mα : L→
L, mα(β) = αβ as a K-linear endomorphism. Then we define the trace trL/K(α) = trmα

and the norm NL/K(α) = detmα.
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Lemma 2.4. We have trL/K(α) = [L : K(α)] trK(α)/K(α) and NL/K(α) = NK(α)/K(α)[L:K(α)].

Proof. This follows from the fact that L ∼= K(α)[L:K(α)] as K(α)-vector spaces.

Lemma 2.5. Let L/K be an extension of number fields of degree [L : K] = n, and let σ0 :
K → C be a complex embedding. Let σ1, . . . , σn : L→ C be the distinct complex embeddings
such that σi|K = σ0. Then for each α ∈ L, we have σ0 trL/K(α) = σ1(α) + · · · + σn(α) and
σ0NL/K(α) = σ1(α) . . . σn(α).

Proof. By the previous lemma, we can assume that L = K(α), in which case the minimal
polynomial fα(x) of α over K is equal to the characteristic polynomial of the multiplication-
by-α endomorphism mα : L → L. It follows that if fα(x) = xn + a1x

n−1 + · · · + an, then
trL/K(α) = −a1 and NL/K(α) = (−1)nan. On the other hand, we know that there is a
factorization

σ0fα(x) = (x− σ1(α)) . . . (x− σn(α))

in C[x], showing that −σ0(a1) = σ1(α) + · · · + σn(α) and (−1)nσ0(an) = σ1(α) . . . σn(α).
This completes the proof.

Corollary 2.6. If α ∈ OL, then trL/K(α), NL/K(α) ∈ OK.

Proof. Note that for β ∈ K, we have β ∈ OK if and only if σ0(β) ∈ OC (as for f(x) ∈ Z[x],
f(β) = 0 if and only if f(σ0(β)) = 0).

Let α ∈ OL. The previous lemma shows that σ0(trL/K(α)) is a sum of algebraic inte-
gers, hence an algebraic integer, hence trL/K(α) is an algebraic integer. The same argument
applies to the norm.

Proposition 2.7. Let d ∈ Z−{0, 1} be a square-free integer, and let L be the corresponding
quadratic field.

1. If d ≡ 2, 3 mod 4, then OL = Z[
√
d].

2. If d ≡ 1 mod 4, then OL = Z[1
2
(1 +

√
d)].

Proof. In either case we have L = {a+b
√
d | a, b ∈ Q}. Let α = a+b

√
d ∈ L. We claim that

α ∈ OL if and only if trL/Q(α) = 2a ∈ Z and NL/Q(α) = a2− db2 ∈ Z. We have already seen
that these conditions are necessary. To see that they are sufficient, note that the polynomial
x2 − trL/Q(α)x+NL/Q(α) ∈ Q[x] has α as a zero. This shows that the claimed rings are at
least subrings of OL.

Let α = a + b
√
d ∈ OL. Then a = u/2 for some u ∈ Z, hence 4db2 ∈ Z. Writing

b = r/s with r, s ∈ Z coprime and s > 0, we find 4dr2 ∈ s2Z, hence s2|4d, hence s = 1 or 2
(as d is square-free). Thus we can write b = v/2 for some v ∈ Z and hence α = u

2
+ v

2

√
d.

We have u2 − dv2 ∈ 4Z, hence u2 ≡ dv2 mod 4.
If d ≡ 2, 3 mod 4 then this forces u and v to both be even, hence α ∈ Z[

√
d]. On

the other hand if d ≡ 1 mod 4 then this forces u ≡ v mod 2, hence α ∈ Z[1
2
(1 +

√
d)]. This

completes the proof.

5



Another application of the norm is to characterize units. Recall that if R is a ring,
then an element u ∈ R is called a unit if there exists v ∈ R such that uv = 1. The set
R× ⊂ R of units forms a group under multiplication.

Lemma 2.8. Let L be a number field. Then O×L = {α ∈ OL | NL/Q(α) = ±1}.

Proof. The norm is multiplicative. If α ∈ O×L , then there exists β ∈ OL such that αβ = 1,
hence NL/Q(αβ) = NL/Q(α)NL/Q(β) = 1. Since Z× = {±1}, we must have NL/Q(α) = ±1.
Suppose conversely that α ∈ OL and NL/Q(α) = ±1. We must show that α−1 is an algebraic
integer. Let σ1, . . . , σn : L → C denote the distinct complex embeddings of L. Then we
have σ1(α) . . . σn(α) = ±1, hence σ1(α−1) = ±σ2(α) . . . σn(α). This shows that σ1(α−1) is
an algebraic integer, hence that α−1 is an algebraic integer.

3 Discriminant and integral bases

Let L be a number field of degree n = [L : Q]. Let σ1, . . . , σn : L → C be the distinct
complex embeddings.

Definition 3.1. If α1, . . . , αn are elements of L, then we define their discriminant

disc(α1, . . . , αn) = det(σiαj)
2.

We note that this does not depend on the choice of ordering of the embeddings, or
on the choice of ordering of the elements α1, . . . , αn. Indeed, a change in ordering changes
the determinant by a sign, which disappears when we square.

Lemma 3.2. We have disc(α1, . . . , αn) = det(trL/Q αiαj).

Proof. Define n× n matrices Tij = trL/Q αiαj and Dij = σiαj. Then we have

Tij =
n∑
k=1

σk(αi)σk(αj) =
n∑
k=1

DkiDkj = (tDD)ij,

hence T = tDD, hence detT = det(D)2 = disc(α1, . . . , αn).

Corollary 3.3. We have disc(α1, . . . , αn) ∈ Q. If in fact α1, . . . , αn ∈ OL, then disc(α1, . . . , αn) ∈
Z.

Proof. The previous lemma presents the discriminant as the determinant of a matrix with
coefficients in Q. On the other hand if α1, . . . , αn are algebraic integers, then disc(α1, . . . , αn)
is an algebraic integer in C. Since it is also a rational number, it lies in OQ = Z.

Proposition 3.4. We have disc(α1, . . . , αn) 6= 0 if and only if the elements α1, . . . , αn form
a basis for L as Q-vector space.
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Proof. If the elements α1, . . . , αn are linearly dependent over Q, then the columns of the
matrix σiαj are linearly dependent and the discriminant is zero. Suppose instead that the
elements α1, . . . , αn form a basis for L. By the lemma, the discriminant is then non-zero if
and only if the symmetric bilinear form T : L×L→ Q, T (x, y) = trL/Q xy, is non-degenerate.
This is true: for any non-zero element β ∈ L, we have T (β, β−1) = n 6= 0.

The first application of the discriminant is to understanding integral bases.

Definition 3.5. An integral basis for OL is a tuple (α1, . . . , αn) of elements αi ∈ OL which
generate OL as a Z-module.

Lemma 3.6. If (α1, . . . , αn) is an integral basis, then the map Zn → OL, (m1, . . . ,mn) 7→
m1α1 + · · ·+mnαn is an isomorphism.

Proof. The map is surjective, by definition. Since any element of L admits an integer multiple
which lies in OL, we see that α1, . . . , αn span L; they therefore form a basis of L as Q-vector
space and are linearly independent over Q. This implies that the map is injective.

Lemma 3.7 (Sandwich Lemma). 1. Let H ⊂ G be abelian groups such that G ∼= Zn for
some n ≥ 1. Then H ∼= Zm for some m ≤ n.

2. Let K ⊂ H ⊂ G be abelian groups such that K ∼= Zn and G ∼= Zn for some n ≥ 1.
Then H ∼= Zn.

3. Let H ⊂ G be abelian groups such that H ∼= G ∼= Zn for some n ≥ 1. Then G/H is
finite.

Proof. By the classification of finitely generated abelian groups, there is an isomorphism
H ∼= Zm for some m ≥ 1. We just need to explain why m ≤ n. There is an isomorphism
G/H ∼= Zk ⊕ Z/(d1)⊕ · · · ⊕ Z/(dm) for some non-zero integers d1, . . . , dm. Let p be a prime
not dividing any of d1, . . . , dm. Then multiplication by p is injective on G/H. It follows that
the map H/pH → G/pG is injective: if h ∈ H and h = pg for some g ∈ G, then g+H is an
element of G/H which is in the kernel of multiplication by p, hence g +H = H and g ∈ H.
This in turn implies that pm ≤ pn, hence m ≤ n.

This proves the first part of the lemma. The first part implies the second. It remains
to prove the third. There is an isomorphism G/H ∼= Za ⊕ T , where a ≥ 0 and T is a finite
abelian group. We must show that a = 0. Let p be a prime not dividing the order of T ,
so that multiplication by p is again injective on G/H. Then the homomorphism G/pG →
G/H + pG is surjective, and contains H/pH in its kernel. Since |H/pH| = |G/pG| = pn and
|G/H + pG| = pa, this can happen only if a = 0, as desired.

Proposition 3.8. There exists an integral basis for OL.

Proof. Let β1, . . . , βn be a basis of L as Q-vector space. After clearing denominators, we can
assume that βi ∈ OL for each i = 1, . . . , n. Thus there is an inclusion

⊕ni=1Zβi ⊂ OL.
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Let β∗1 , . . . , β
∗
n denote the dual basis of L with respect to the trace form T (x, y) = trL/Q(xy).

Then there is an inclusion
OL ⊂ ⊕ni=1Zβ∗i .

Indeed, if α =
∑n

i=1 aiβ
∗
i is an element of OL (with ai ∈ Q), then T (α, βj) = trL/Q αβj ∈ Z

(as the trace of an algebraic integer is an integer). The sandwich lemma implies that OL
admits an integral basis.

Definition 3.9. We call the discriminant of the number field L the number DL = disc(α1, . . . , αn),
where (α1, . . . , αn) is any integral basis.

Note that this is independent of the choice of integral basis. Indeed, if α1, . . . , αn
and β1, . . . , βn are two integral bases, then we can find a matrix A ∈ GLn(Z) with βj =∑n

k=1Akjαk. Then we have disc(β1, . . . , βn) = disc(α1, . . . , αn) det(A)2 = disc(α1, . . . , αn).
The following is a useful tool for calculating the discriminant in some situations.

Proposition 3.10. Let L = Q(α) be a number field of degree [L : Q] = n, and let f(x) ∈ Q[x]
be the minimal polynomial of α. Let σ1, . . . , σn : L → C be the distinct complex embeddings
of L. Then

disc(1, α, α2, . . . , αn−1) =
∏
i<j

(σi(α)− σj(α))2 = (−1)n(n−1)/2NL/Q(f ′(α)).

We note that the term in the middle is what, in Part II Galois Theory, we call the
discriminant disc f of the polynomial f .

Proof. The determinant det(σiα
j−1) is a Vandermonde determinant, equal to

∏
i<j(σjα −

σiα). This shows the first equality. For the second, we observe that

NL/Q(f ′(α)) =
n∏
i=1

σif
′(α) =

n∏
i=1

∏
j 6=i

(σi(α)− σj(α)) = (−1)n(n−1)/2
∏
i<j

(σi(α)− σj(α))2,

as required.

Example. We can use the preceding proposition to calculate the discriminant of the quadratic
field L = Q(

√
d), where d 6= 0, 1 is a square-free integer. If d ≡ 2, 3 mod 4 then OL = Z[

√
d],

so we take f(x) = x2 − d and get DL = −NL/Q(2
√
d) = 4d. If d ≡ 1 mod 4, then OL =

Z[1
2
(1 +

√
d)], so we take f(x) = x2 − x+ (1− d)/4 and get DL = −NL/Q(

√
d) = d.

A useful sufficient (but not necessary!) criterion for elements α1, . . . , αn to form an
integral basis for OL is the following.

Proposition 3.11. Suppose that α1, . . . , αn ∈ OL and disc(α1, . . . , αn) is a non-zero square-
free integer. Then (α1, . . . , αn) is an integral basis of L.
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Proof. The elements α1, . . . , αn are independent over Q, because their discriminant is non-
zero. Let M = ⊕ni=1Zαi ⊂ OL. Then the index [OL : M ] is finite, by the sandwich
lemma. Let β1, . . . , βn be an integral basis for OL, and choose a matrix Bij in Mn(Z) such
that αj =

∑n
k=1Bkjβk. Then we have σi(αj) =

∑n
k=1 σi(βk)Bkj, hence D(α) = D(β)B

in the obvious notation. This shows that disc(α1, . . . , αn) = disc(β1, . . . , βn) det(B)2. If
disc(α1, . . . , αn) is square-free, then we must have det(B) = ±1, showing that B ∈ GLn(Z)
and hence that there exists a matrix C ∈Mn(Z) such that

∑n
l=1BklClj = δkj. It follows that

βi ∈M for each i = 1, . . . , n, and hence that OL = M and α1, . . . , αn is an integral basis for
OL.

Example. The discriminant of a cubic polynomial f(x) = x3 + ax + b is −4a3 − 27b2. Let
f(x) = x3−x−1 ∈ Z[x]. Then f(x) is irreducible over Q and disc f = −23 is square-free. Let
L = Q[x]/(f(x)), and let α ∈ L denote the image of x mod (f(x)). Then α is an algebraic
integer, and discZ[α] = disc f = −23. The proposition shows that in fact Z[α] = OL.

Finally we introduce some useful definitions for ideals of OL.

Definition 3.12. Let L be a number field, and let I ⊂ OL be a non-zero ideal. An integral
basis for I is, by definition, a tuple α1, . . . , αn of elements of I which generate I as a Z-
module.

Lemma 3.13. Any non-zero ideal I ⊂ OL admits an integral basis.

Proof. We first suppose that I = (α) is principal. Then if α1, . . . , αn is an integral basis for
OL, then αα1, . . . , ααn is an integral basis for I. In general, we can choose a non-zero element
α ∈ I, and then (α) ⊂ I ⊂ OL. The result then follows from the sandwich lemma.

Note that the proof of the lemma implies that if α1, . . . , αn is an integral basis of I,
then α1, . . . , αn forms a basis of L as Q-vector space and there is an isomorphism I ∼= ⊕ni=1Zαi
of Z-modules.

Definition 3.14. If I ⊂ OL is a non-zero ideal, then we define N(I) = [OL : I]. (This
index is finite, by the sandwich lemma.)

Definition 3.15. We define disc(I) = disc(α1, . . . , αn), where α1, . . . , αn is any integral
basis for I. The same argument as for OL shows that disc(I) is independent of the integral
basis chosen.

Lemma 3.16. If I ⊂ OL is a non-zero ideal, then disc(I) = disc(OL)N(I)2.

Proof. Let α1, . . . , αn be an integral basis for OL, and let β1, . . . , βn be an integral basis for
I. Let B ∈ Mn(Z) be the matrix such that βj =

∑n
k=1 Bkjαk. We have seen that disc(I) =

disc(OL) det(B)2, so we just need to show that | det(B)| = [OL : I]. By one of the main
results from IB Groups, Rings, and Modules, we can find choose α1, . . . , αn and β1, . . . , βn
such that the matrix B is in Smith normal form, i.e. so that it is diagonal with diagonal
entries d1|d2| . . . |dn for some non-zero integers d1, . . . , dn. Then we have det(B) = d1 . . . dn,
while OL/I ∼= ⊕ni=1Z/diZ. The result follows.
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Lemma 3.17. Let α ∈ OL be non-zero, and let I = (α). Then N(I) = |NL/Q(α)|.

Proof. Let α1, . . . , αn be an integral basis for OL. Then αα1, . . . , ααn is an integral basis for
I. Let σ1, . . . , σn : L→ C be the distinct complex embeddings of L. Then we have

disc(I) = det(σi(ααj))
2 = det(σi(α)σi(αj))

2 = NL/Q(α)2 disc(OL),

since σ1(α) . . . σn(α) = NL/Q(α). Using Lemma 3.16 we find that NL/Q(α)2 = N(I)2, hence
|NL/Q(α)| = N(I).

We will abuse notation slightly by writing N(α) for the norm of the ideal (α). We
thus have N(α) = |NL/Q(α)|. It is convenient to define the norm of the zero ideal to be
N(0) = 0; then this identity holds for α = 0 also.

4 Ideals and unique factorization

Let L be a number field. A key difference between Z and the ring OL is that OL need not
be a unique factorization domain in general. Recall that in a ring R, an element x ∈ R
is said to be irreducible if it is not zero, not a unit, and cannot be expressed as a product
x = yz with both y, z non-units. In fact every element of OL can be written as a product of
irreducibles. The argument, as in the case of Z, is by induction on N(x): we have N(x) = 1
if and only if x is a unit. If N(x) > 1, then either x is irreducible, or x = yz with both y, z
non-units. Then N(y) < N(x) and N(y) < N(x), so by induction both y, z can be written
as products of irreducibles.

However, this expression as a product of irreducibles is not unique. Consider, for
example, L = Q(

√
−5), so OL = Z[

√
−5]. The elements 2, 3, 1 +

√
−5, 1 −

√
−5 are all

irreducible. For example, if yz = 2, then N(y)N(z) = N(2) = 4. If y = a + b
√
−5

and N(y) = 2, then a2 + 5b2 = 2. This equation has no solutions in integers a, b, so we
see N(y) = 1 or N(y) = 4, showing that y or z is a unit. The other cases can be dealt
with similarly. Moreover, it is easy to show that none of these elements are associates (as
O×L = {±1}).

However, we have 6 = 2 × 3 = (1 +
√
−5) × (1 −

√
−5). This is an example of an

element having two distinct factorizations as a product of irreducibles. How can we get
around this? The point is that if we consider ideals, instead of ring elements, then we have
the possibility of reducing elements further.

Let R be an integral domain, and let x, y ∈ R. Then (x) ⊂ (y) if and only if y divides
x. In particular, the ideals (x), (y) are equal if and only if x, y are associates (i.e. one is a
unit multiple of the other). We recall that if I, J are ideals of R, then we can define their
sum and product

I + J = {z + w | z ∈ I, w ∈ J}
and

IJ = {
∑
i

ziwi | zi ∈ I, wi ∈ J}.

These are again ideals of R. If I = (x) and J = (y), then I + J = (x, y) and IJ = (xy).
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Let us say that an ideal I ⊂ R is irreducible if it cannot be written as a product
I = JK, where J,K are proper ideals of R. In the above example, the difficulty is resolved
by the fact that the ideals (2), (3), (1 +

√
−5), (1 −

√
−5) are not irreducible, even though

they are generated by irreducible elements. In fact, we have (2) = (2, 1 +
√
−5)2 and

(3) = (3, 1 +
√
−5)(3, 1−

√
−5), and you can check that all of these ideals are proper ideals

of OL.
In this chapter, we will show that any non-zero ideal of OL can be written uniquely

as a product of irreducible ideals of OL. In fact, it is more convenient to with prime ideals,
although these we will eventually see that the two definitions are equivalent.

Definition 4.1. Let R be a ring. A prime ideal P ⊂ R is a proper ideal satisfying xy ∈
P ⇒ x ∈ P or y ∈ P for any elements x, y ∈ R.

Lemma 4.2. Let R be a ring, and let P ⊂ R be a prime ideal. If I, J ⊂ R are ideals such
that IJ ⊂ P , then I ⊂ P or J ⊂ P .

Proof. Suppose that I 6⊂ P , and let x ∈ I \ P . For any y ∈ J , we have xy ∈ IJ ⊂ P , hence
xy ∈ P . Since P is prime, this forces y ∈ P . Since y was arbitrary, we find J ⊂ P .

From now on, we assume that L is a number field.

Lemma 4.3. Any non-zero prime ideal of OL is maximal.

Proof. We recall from IB Groups, Rings and Modules that an ideal I ⊂ R of a ring is prime
if and only if R/I is an integral domain, and is maximal if and only if R/I is a field. If
P ⊂ OL is a non-zero prime ideal, then R/P is a finite integral domain (of cardinality N(P )).
Any finite integral domain is a field (as if x is non-zero, then the sequence x, x2, x3, . . . must
eventually be periodic, by the pigeonhole principle). It follows that P is maximal.

Lemma 4.4. Every non-zero ideal I ⊂ OL contains a product of non-zero prime ideals.

Proof. Suppose not, and let I be a counterexample with N(I) minimal. Then N(I) > 1
as OL contains prime ideals. (Take any maximal ideal.) Moreover I cannot be prime, so
there exist elements x, y ∈ OL such that xy ∈ I but x 6∈ I and y 6∈ I. Thus we have
N(I+(x)) < N(I) and N(I+(y)) < N(I), so the ideals I+(x) and I+(y) contain products
P1 . . . Pr and Q1 . . . Qs of prime ideals. But then we have

P1 . . . PrQ1 . . . Qs ⊂ (I + (x))(I + (y)) ⊂ I + (xy) = I.

This contradiction concludes the proof.

Lemma 4.5. Let I ⊂ OL be a proper non-zero ideal. Then there exists γ ∈ L\OL such that
γI ⊂ OL.

Proof. Let α ∈ I be a non-zero element. Then we can find a product of non-zero prime ideals
P1 . . . Pr ⊂ (α), by the previous lemma. We assume that r is minimal with this property.
On the other hand we can find a prime ideal P containing I. Thus P contains some Pi,
hence equals Pi. After relabelling, we can assume that P = P1. Since r is minimal, we have
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P2 . . . Pr 6⊂ (α), we can choose an element β ∈ P2 . . . Pr − (α). We claim that the element
γ = β/α satisfies the requirements of the lemma.

If γ ∈ OL then β = αγ ∈ (α), which contradicts the definition of β. So γ ∈ L \ OL.
On the other hand, we have

γI =
β

α
I ⊂ 1

α
P2 . . . PrI ⊂ P1

1

α
P2 . . . Pr ⊂ OL,

as required.

Proposition 4.6. Let I ⊂ OL be a non-zero ideal. Then there exists a non-zero ideal J ⊂ OL
such that IJ is principal.

Proof. Let α ∈ I be a non-zero element, and set J = {β ∈ OL | βI ⊂ (α)}. Then J is a
non-zero ideal of OL, and IJ ⊂ (α). We will show that in fact IJ = (α).

Let K = 1
α
IJ . Reformulating slightly, we see that K ⊂ OL is a non-zero ideal, and

we must show that K = OL. If K 6= OL, then we can find γ ∈ L \ OL such that γK ⊂ OL.
Observe that this implies γIJ = γαK ⊂ (α), hence γJ∩OL ⊂ J . On the other hand we have
(α) ⊂ I, hence J ⊂ K, hence γJ ⊂ γK ⊂ OL. We therefore have γJ ⊂ J . Since J ∼= Zn
as abelian groups, this implies that γ satisfies a monic polynomial in Z[x], contradicting
γ 6∈ OL. This contradiction completes the proof.

Corollary 4.7. If I, J,K ⊂ OL are non-zero ideals and IJ = IK, then J = K.

Proof. We can find an ideal A ⊂ OL such that AI = (α) is principal. Then we find αJ = αK,
hence J = K.

Let I, J ⊂ OL be non-zero ideals. We say that I divides J , and write I|J , if there is
an ideal K ⊂ OL such that IK = J .

Corollary 4.8. If I, J ⊂ OL are non-zero ideals, then I|J if and only if I ⊃ J .

Proof. Clearly if there exists K such that IK = J , then I ⊃ J . Suppose conversely that
I ⊃ J , and fix a non-zero ideal K ⊂ OL such that IK = (α) is principal. Then 1

α
JK ⊂ OL

is an ideal and 1
α
JKI = J , showing that I|J .

Theorem 4.9. Any non-zero ideal I ⊂ OL admits an expression I = P1 . . . Pr as a product
of prime ideals of OL. This expression is unique up to re-ordering of terms.

Proof. Suppose for contradiction that there exists an ideal I which does not admit such an
expression. We can assume that N(I) is minimal with this property. Let P be a prime ideal
containing I. By the second corollary, we can write I = PJ for some ideal J . Then J ⊃ I.
If J = I then by the first corollary we can divide to get OL = P , a contradiction. Therefore
J 6= I and by minimality, we can write J , and hence I, as a product of prime ideals: this is
the desired contradiction.

If I = P1 . . . Pr = Q1 . . . Qs admits two expressions as a product of primes, then P1

divides Q1 . . . Qs, so contains some Qi, say Q1 (after relabelling of terms). Then we must
have P1 = Q1, so we can divide to find P2 . . . Pr = Q2 . . . Qs. Continuing in this way we find
that r = s and the two expressions are the same.
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Now that we have shown that ideals cancel, we can define the ideal class group of a
number field L.

Definition 4.10. The ideal class group Cl(OL) is the set of equivalence classes of non-zero
ideals I ⊂ OL under the equivalence relation: I ∼ J if there exists α ∈ L× such that I = αJ .

It is easy to see that this is an equivalence relation. We write [I] for the equivalence
class containing an ideal I.

Lemma 4.11. Cl(OL) is a group under the operation [I][J ] = [IJ ].

Proof. The operation is well-defined on equivalence classes. An identity is [OL]. The exis-
tence of inverses is precisely the statement of Proposition 4.6.

Proposition 4.12. The following are equivalent:

1. OL is a principal ideal domain (PID).

2. OL is a unique factorization domain (UFD).

3. The group Cl(OL) is trivial.

Proof. (i)⇒ (ii): proved in IB Groups, Rings, and Modules.
(ii) ⇒ (iii): by unique factorization of ideals, it suffices to show that all non-zero

prime ideals of OL are principal. If P ⊂ OL is a non-zero prime ideal, choose a non-zero
element α ∈ P , and factor α = α1 . . . αr as a product of irreducible elements of OL. Since P
is prime, we have αi ∈ P for some i; after relabelling, we can assume α1 ∈ P .

Since OL is a UFD, the ideal (α1) is prime. Since (α1) ⊂ P and all non-zero prime
ideals of OL are maximal, we must have (α1) = P , showing that P is indeed principal.

(iii)⇒ (i): let I ⊂ OL be a non-zero ideal. Then [I] = [OL], so there exists α ∈ L×
such that I = αOL, hence α ∈ OL and I = (α). Therefore I is principal.

Thus the ideal class group Cl(OL) measures the failure of the ring OL to be a unique
factorization domain.

We will end this section by using unique factorization to show that the ideal norm is
multiplicative:

Proposition 4.13. Let I, J ⊂ OL be ideals. Then N(IJ) = N(I)N(J).

Proof. By convention, we have N(0) = 0, and the proposition is trivial if either I or J is the
zero ideal. We can therefore assume that they are both non-zero. Let I = P e1

1 . . . P er
r denote

the factorization of I as a product of powers of distinct primes of OL. It is clearly enough to
show that in fact N(I) =

∏r
i=1 N(P )ei . On the example sheet, you will prove the Chinese

Remainder Theorem: this says that if A,B ⊂ OL are non-zero ideals with no prime ideal
factors in common, then there is an isomorphism OL/(AB) ∼= OL/A ×OL/B. This clearly
implies that N(AB) = N(A)N(B), so reduces us to showing that N(P e) = N(P )e for any
non-zero prime ideal P ⊂ OL and integer e ≥ 1.
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We have a chain of ideals OL ⊃ P ⊃ P 2 ⊃ · · · ⊃ P e, and each successive quotient
P i/P i+1 is a module over the field OL/P , which has cardinality N(P ). Since we have

N(P e) = |OL/P e| =
e−1∏
i=0

|P i/P i+1|,

it will suffice to show that each P i/P i+1 is in fact a 1-dimensional vector space over the field
OL/P . Choose an element α ∈ P \ P 2. Then we can define a map OL/P → P i/P i+1 by the
formula β+P 7→ αiβ+P i+1. It will suffice to show that this map is surjective. By definition
of the map, this is equivalent to showing that (αi) + P i+1 = P i.

We can factor (α) = PQ, where Q is not divisible by P , hence (αi) = P iQi. We recall
(Corollary 4.8) that for non-zero ideals A,B of OL, A divides B if and only if A contains B.
In paticular, A divides (αi) + P i+1 if and only if A contains (αi) and P i+1, if and only if A
divides (αi) = P iQi and P i+1. It follows that we must have (αi)+P i+1 = P i, as desired.

5 Dedekind’s criterion

Let L be a number field. We now discuss how to actually construct prime ideals of OL. If
P ⊂ OL is a prime ideal, then OL/P is a finite field, so there is exactly one prime number
p such that P |(p). This reduces us to factorizing the ideal (p) for each prime number p. We
begin with a preliminary observation:

Lemma 5.1. Suppose that p is a prime, and factor (p) = P e1
1 . . . P er

r , where P1, . . . , Pr are
distinct prime ideals of OL and ei ≥ 1 for each i = 1, . . . , r. Then n =

∑r
i=1 eifi, where

N(Pi) = pfi.

Proof. This follows immediately from the fact that the ideal norm N(I) is multiplicative.

Note in particular that this implies r ≤ n. It is helpful to introduce some terminology:

Definition 5.2. Let p be a prime number, and factor (p) = P e1
1 . . . P er

r , where P1, . . . , Pr are
distinct prime ideals of OL.

1. We say that p ramifies in OL if ei > 1 for some i = 1, . . . , r.

2. We say that p is inert in OL if (p) is prime (i.e. r = 1 and e1 = 1).

3. We say that p splits completely in OL if r = n (equivalently, ei = fi = 1 for each
i = 1, . . . , r).

It is often possible to factor (p) using the following theorem:

Theorem 5.3 (Dedekind’s theorem). Suppose that α ∈ OL is such that L = Q(α). Let
fα(x) ∈ Z[x] be the minimal polynomial of α over Q, and let p be a prime number not
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dividing the index [OL : Z[α]]. Let fα(x) ∈ Fp[x] denote the reduction of fα(x) modulo p,
and suppose that there is a factorization

fα(x) =
r∏
i=1

gi(x)ei

in Fp[x], where the ei ≥ 1 are integers and the gi(x) are pairwise distinct irreducibles.
For each i = 1, . . . , r, choose a polynomial gi(x) ∈ Z[x] with reduction modulo p equal

to gi, and let Qi = (p, gi(α)). Then for each i = 1, . . . , r, Qi is a prime ideal of OL which
does not depend on the choice of gi, and

(p) =
r∏
i=1

Qei
i

is the factorization of (p) as a product of powers of distinct prime ideals of OL.

Proof. Consider the ring A = Z[α]/pZ[α]. Then there are isomorphisms

A ∼= Z[x]/(p, fα(x)) ∼= Fp[x]/(fα(x)) ∼=
r∏
i=1

Fp[x]/(gi(x))ei ,

the last isomorphism by the Chinese Remainder Theorem applied to the Euclidean domain
Fp[x]. Each ring Fp[x]/(gi(x))ei has a quotient Fp[x]/(gi(x)), which is a finite field of car-
dinality pfi , where fi = deg gi(x). We define P i ⊂ A to be the kernel of the composite
map

A→ Fp[x]/(gi(x))ei → Fp[x]/(gi(x)).

Then P 1, . . . , P r are pairwise distinct prime ideals, and in fact P i = (gi(α)).
The map Z[α] → OL induces, by passage to quotient, a map Z[α]/pZ[α] → OL/(p).

We claim that this map is an isomorphism. Observe that both source and target have
cardinality pn. It therefore suffices to show that the map is surjective. Let N = [OL : Z[α]].
By hypothesis, p does not divide N , so we can find integers a, b ∈ Z such that aN + bp = 1.
If x ∈ OL then Nx ∈ Z[α], hence x = aNx+ bpx ∈ Z[α] + pOL; hence x mod (p) is equal to
the image of the element aNx ∈ Z[α], and our map is surjective.

The prime ideals of OL containing p are in bijection with the prime ideals of OL/(p).
These in turn are in bijection with the ideals of A = Z[α]/pZ[α]. If P ⊂ A is a prime, then
the corresponding ideal of OL is (P, p), where P denotes the pre-image of P in Z[α]. Let
Qi = (p, gi(α)) be the prime ideal of OL corresponding to P i. Then Q1, . . . , Qr are pairwise
distinct prime ideals of OL containing p, and N(Qi) = pfi for each i = 1, . . . , r.

It remains to check that (p) = Qe1
1 . . . Qer

r . However, we have

Qei
i = (p, gi(α))ei ⊂ (p, gi(α)ei),

hence
Qe1

1 . . . Qer
r ⊂ (p, g1(α)e1 . . . gr(α)ei) = (p),
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as g1(x)e1 . . . gr(x)er = fα(x) + pg(x) for some g(x) ∈ Z[x]. Taking norms, we have

N(Qe1
1 . . . Qer

r ) = N(Q1)e1 . . . N(Qr)
er = pe1f1+···+erfr = pn = N(p).

It follows that we must have Qe1
1 . . . Qer

r = (p), which is what we needed to prove.

As an example, let L = Q(
√
−11) and consider the factorization of (5). Since −11 ≡

1 mod 4, we have OL = Z[1
2
(1 +

√
−11)]; this ring contains Z[

√
−11] with index 2. Since 5

and 2 are coprime, we can apply Dedekind’s criterion to the polynomial fα(x) = x2 + 11.
The reduction modulo 5 is x2 + 1; since −1 ≡ 22 mod 5, this factors as (x − 2)(x − 3) in
F5[x]. We find that the prime factorization of (5) is

(5) = (5,
√
−11− 2)(5,

√
−11− 3),

and that these factors are distinct prime ideals of OL. In particular, 5 splits completely in
OL.

In fact, the same argument works for any quadratic field:

Proposition 5.4. Let d be a square-free integer, d 6= 0, 1. Let L = Q(
√
d). Let p be a prime

number.

1. Suppose that p is odd. Then:

(a) If p divides d, then p ramifies in L; there exists a unique prime ideal P ⊂ OL
dividing (p), and (p) = P 2.

(b) If p does not divide d and d is a quadratic residue modulo p, then p splits completely
in L; there exist distinct prime ideals P,Q ⊂ OL such that (p) = PQ.

(c) If p does not divide d and d is not a quadratic residue modulo p, then p is inert
in L; the ideal (p) is prime.

2. Suppose instead that p = 2. Then:

(a) If d ≡ 2, 3 mod 4 then 2 is ramified in L.

(b) If d ≡ 1 mod 8 then 2 splits completely in L.

(c) If d ≡ 5 mod 8 then 2 is inert in L.

Proof. We just treat the case p = 2. If d ≡ 2, 3 mod 4, then OL = Z[
√
d] so we can apply

Dedekind’s criterion with fα(x) = x2−d. Modulo 2, this polynomial is x2 or x2+1 = (x+1)2;
in either case we see that 2 is ramified.

If d ≡ 1 mod 4, then OL = Z[1
2
(1 +

√
d)] = Z[α], say. We can apply Dedekind’s

criterion with fα(x) = x2 − x + 1
4
(1 − d). If d ≡ 1 mod 8 then modulo 2 this polynomial

is x2 + x = x(x + 1), so 2 splits in OL. If d ≡ 5 mod 8 then modulo 2 this polynomial is
x2 + x+ 1, which is irreducible in F2[x]; and 2 is inert.

16



6 The geometry of numbers

The following theorem is the most important in the entire course.

Theorem 6.1. Let L be a number field. Then there exists a constant CL such that every
class [I] ∈ Cl(OL) contains a representative ideal I of norm N(I) ≤ CL.

We will calculate CL explicitly later on. This will give an effective way to compute
ideal class groups in practice.

Corollary 6.2. Cl(OL) is a finite abelian group. Moreover, it is generated by the classes
[P ] of the non-zero prime ideals P ⊂ OL of norm N(P ) ≤ CL.

We call the cardinality of Cl(OL) the class number of L.

Proof. Every class in Cl(OL) is represented by an ideal I ⊂ Cl(OL) of norm N(I) ≤ CL. To
prove the finiteness of Cl(OL), we need to show that there are only finitely many such ideals
I. It suffices to show that for each integer N ≥ 1, there are only finitely many ideals of
norm N(I) = N . If N(I) = N then, by Lagrange’s theorem, N annihilates the finite abelian
group OL/I, hence N ∈ I. Since ideals of OL containing N correspond to ideals of the finite
ring OL/(N), there are only finitely many possibilities.

If N(I) ≤ CL and I =
∏r

i=1 P
ei
i is the prime factorisation of I, then [I] =

∏r
i=1[Pi]

ei .
This shows that [I] is contained in the subgroup generated by the classes of the prime factors
of [I]. On the other hand, since the norm is multiplicative we must have N(Pi) ≤ CL for
each i = 1, . . . , r. This shows that Cl(OL) is generated by the classes of prime ideals of norm
at most CL.

To prove Theorem 6.1, we will actually prove a slightly different statement:

Theorem 6.3. There exists a constant CL with the following property: let I ⊂ OL be a
non-zero ideal. Then there exists a non-zero element α ∈ I such that N(α) ≤ CLN(I).

Proof of Theorem 6.1 using Theorem 6.3. Let I ⊂ OL be a non-zero ideal. Choose an ele-
ment α ∈ I of norm N(α) ≤ CLN(I). Then I|(α), so there exists an ideal J ⊂ OL such that
IJ = (α). It follows that [I] = [J ]−1 and N(J) = N(α)/N(I) ≤ CL. In other words, the
inverse of every ideal class contains a representative of norm at most CL. Since Cl(OL) is a
group, every ideal class is the inverse of another ideal class, so this completes the proof.

We can therefore focus on proving Theorem 6.3. We first give a sketch of the proof
in the case that L is an imaginary quadratic field. We will then go on to treat the general
case.

We will use the “geometry of numbers”. The key idea is that of embedding the ring
of integers of a number field in a Euclidean vector space. For this reason, we start with the
following definitions:

Definition 6.4. Let V be a finite-dimensional R-vector space. A lattice Λ ⊂ V is the Z-span
of a basis for V as R-vector space.
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Definition 6.5. Let V be a finite-dimensional inner product space over R, and let Λ ⊂ V
be a lattice. The covolume A(Λ) is the volume of a fundamental parallelotope, i.e. the set
{
∑n

i=1 tivi | ti ∈ [0, 1)}, where v1, . . . , vn is a Z-basis for Λ.

We note that the covolume is independent of the choice of Z-basis of Λ. Indeed, it
equals the absolute value of the determinant of the matrix with columns equal to v1, . . . , vn.
If v′1, . . . , v

′
n is a different choice of basis, then we chance the value of the covolume by a

factor | det(B)| for some B ∈ GLn(Z); and this factor equals 1.
Now let d ∈ Z be a negative square-free integer, and let L = Q(

√
d). We recall that

OL = Z[
√
d] (if d ≡ 2, 3 mod 4) or OL = Z[1

2
(1 +

√
d)] (if d ≡ 1 mod 4). Let σ : L → C

be a complex embedding. Then σ(OL) is a lattice in C, viewed as a real vector space of
dimension 2:

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

σ(Z[
√
−2]) σ(Z[1

2
(1 +

√
−3)])

More generally, if I ⊂ OL is a non-zero ideal then σ(I) is a lattice in C. Its covolume
is given by the following lemma.

Lemma 6.6. Let I ⊂ OL be a non-zero ideal. Then A(σ(I)) = 1
2

√
| disc(I)| = N(I)

2

√
|DL|.

Proof. Let α1, α2 be an integral basis for I. Writing σ(α1) = x1 + iy1, σ(α2) = x2 + iy2, we
get

A(I) =

∣∣∣∣det

(
x1 y1

x2 y2

)∣∣∣∣ .
On the other hand, we have

disc(I) = det

(
x1 + iy1 x2 + iy2

x1 − iy1 x2 − iy2

)2

= (2i)2A(I)2.

This implies the desired result.

The key geometric input is the following result about lattices in a 2-dimensional
Euclidean vector space.
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Theorem 6.7 (Minkowski’s theorem in dimension 2). Let Λ ⊂ R2 be a lattice. Then there
exists λ ∈ Λ \ {0} such that |λ|2 ≤ 4

π
A(Λ).

The important point is that the existence of a non-zero point of Λ in the closed disk
of given radius depends only on the area of A(Λ), and not on the shape of Λ itself.

Corollary 6.8. Let CL = 2
π

√
|DL|. For any non-zero ideal I ⊂ OL, there exists a non-zero

element α ∈ I such that N(α) ≤ CLN(I).

Proof. Apply Minkowski’s theorem (Theorem 6.7) to σ(I) ⊂ C.

Thus the class group of an imaginary quadratic field L is generated by the classes of
non-zero prime ideals P ⊂ OL of norm N(P ) ≤ CL. This allows us to effectively calculate
the ideal class group:

Example. Let L = Q(
√
−7). Then |DL| = 7, so CL = 2

√
7/π < 2. There are no primes

p < 2, so Cl(OL) must be the trivial group, and Z[1+
√
−7

2
] must be a UFD.

Example. Let L = Q(
√
−5). Then |DL| = 20, so CL = 4

√
5/π < 3. Using Dedekind’s

criterion, we find that (2) = (2, 1 +
√

5)2 = P 2, say. If P is not principal, then we will have
Cl(OL) ∼= Z/2Z. However, if P = (a+ b

√
−5) then N(P ) = 2 = a2 + 5b2. This equation has

no solutions with a, b ∈ Z, so P is indeed not a principal ideal.

We now go beyond the case of imaginary quadratic fields and treat the case of a
general number field L. We first state and prove the more general version of Minkowski’s
theorem that we use.

Theorem 6.9 (Minkowski’s theorem). Let Λ be a lattice in Rn, and let E ⊂ Rn be a subset
satisfying the following conditions:

1. The boundary ∂E has volume 0.

2. E is convex.

3. E is centrally symmetric: i.e. E = −E.

Then if vol(E) > 2nA(Λ), then E contains a non-zero point of Λ. If E is moreover compact,
this this conclusion holds under the weaker assumption that vol(E) ≥ 2nA(Λ).

Proof. We first treat the case of strict inequality. Let v1, . . . , vn be a Z-basis for Λ, and
let P denote the corresponding fundamental parallelotope. Then Rn is a disjoint union of
translates λ+ P , λ ∈ Λ. It follows that

1

2
E = tλ∈Λ((

1

2
E) ∩ λ+ P ).

We thus have

vol(P ) < vol(
1

2
E) =

∑
λ∈Λ

vol((
1

2
E) ∩ λ+ P ) =

∑
λ∈Λ

vol((
1

2
E − λ) ∩ P ).
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If the sets 1
2
E − λ were pairwise disjoint, then the right-hand side here would be bounded

above by vol(P ): a contradiction. Therefore there must exist distinct elements λ, µ ∈ Λ such
that the intersection

(
1

2
E − λ) ∩ (

1

2
E − µ)

is non-empty. Using that E is centrally symmetric and convex, this implies that λ− µ is a
non-zero element of Λ ∩ E.

To treat the case of non-strict inequality, we recall (theorem of Heine–Borel) that E
is compact if and only if it is closed and bounded. Applying the first part of the theorem
to the sets (1 + 1

m
)E, we find non-zero elements λm ∈ (1 + 1

m
)E ∩ Λ. These points are all

contained in 2E ∩ Λ, which is a finite set; we can therefore find a non-zero element λ ∈ Λ
which is contained in (1 + 1

m
)E for all m ≥ 1.

Now let n = [L : Q], let σ1, . . . , σr denote the real embeddings of L, and let
τ1, τ 1, . . . , τs, τ s denote the conjugate pairs of complex embeddings. We identify C = R2

and define a map S : L→ Rn = Rr × Cs by the formula

S : α 7→ (σ1(α), . . . , σr(α), τ1(α), . . . , τs(α)).

This is an injective homomorphism.

Lemma 6.10. S(OL) is a lattice. More generally, if I ⊂ OL is a non-zero ideal, then S(I)
is a lattice.

Proof. Fix an integral basis α1, . . . , αn of I. We must show that the vectors S(α1), . . . , S(αn)
are linearly independent; in other words, that the matrix A with columns

(σ1(αi), . . . , σr(αi),Reτ1(αi), Imτ1(αi), . . . ,Reτs(αi), Imτs(αi))

is non-singular. After performing column operations on S, we can transform this matrix to
the matrix with columns

(σ1(αi), . . . , σr(αi), τ1(αi), τ1(αi), . . . , τs(αi), τs(αi)).

We find (−2i)2s detA2 = disc(I). In particular, detA 6= 0 and S(I) is a lattice.

Lemma 6.11. Let I ⊂ OL be a non-zero ideal. Then A(S(I)) = 1
2s

√
| disc(I)| = N(I)

2s

√
|DL|.

Proof. The proof is the same computation with determinants as in the proof in the previous
lemma.

The following is a restatement of Theorem 6.3.

Theorem 6.12. For any non-zero ideal I ⊂ OL, there exists an element α ∈ I such that
N(α) ≤ CLN(I), where CL = ( 4

π
)s n!
nn

√
|DL|.

We call the value CL = ( 4
π
)s n!
nn

√
|DL| the Minkowski constant.
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Proof. We will apply Minkowski’s theorem to the lattice S(I) ⊂ Rn = Rr × Cs. For any
t ≥ 0, we define a region

Br,s(t) = {(y1, . . . , yr, z1, . . . , zs) ∈ Rr × Cs |
r∑
i=1

|yi|+ 2
s∑
j=1

|zj| ≤ t}.

This is a compact subset of Rn. It is clearly centrally symmetric. It is convex, as follows
immediately from the triangle inequality. We claim that vol(Br,s(t)) = 2r

(
π
2

)s tn
n!

. We assume
this for now, and prove the proposition.

We choose t so that Br,s(t) has volume equal to 2nA(S(I)), or in other words so that

tn = n!

(
4

π

)s
N(I)

√
|DL|.

Then Minkowski’s lemma implies that there exists a non-zero element α ∈ I such that
S(α) ∈ Br,s(t). Let S(α) = (y1, . . . , yr, z1, . . . , zs). Using the AM-GM inequality, we have

N(α)1/n = (|y1 . . . yrz1z1 . . . zszs|)1/n ≤ |y1|+ · · ·+ |yr|+ 2|z1|+ · · ·+ 2|zr|
n

≤ t

n
,

hence N(α) ≤ tn/nn = N(I)CL, as required.
It remains to prove that vol(Br,s(t)) = 2r(π

2
)s t

n

n!
. This can be proved by induction

on r, s, the base cases being B1,0(t) = [−t, t] and B0,1(t) = D(0, t
2
) (we leave it as an

exercise).

We note that other regions could have been used in the proof of Theorem 6.12;
however, there is no simple choice that gives a better value for the constant CL. We repeat
the following consequences of Theorem 6.12:

Theorem 6.13. The ideal class group Cl(OL) is finite. It is generated by the classes of
non-zero prime ideals P ⊂ OL of norm N(P ) ≤ CL.

This bound is amazingly sharp! The following example illustrates this.

Example. Let f(x) = x5 − x + 1, and let L = Q[x]/(f(x)). (One can check that f(x)
is irreducible modulo 5, hence irreducible over Q.) Let α = x mod (f(x)) ∈ OL. The
discriminant of the polynomial x5 + ax + b is 55b4 + 28a5. In the present case we have
a = −1, b = 1, giving

discZ[α] = 2869 = 19× 151.

In particular, this discriminant is square-free, showing that Z[α] = OL. The polynomial f(x)
has exactly one real root, so r = 1, s = 2. We have

CL =

(
4

π

)2
5!

55

√
2869 < 4,

so every ideal class of Cl(OL) contains a representative I of norm N(I) < 4. We will show
that there are no ideals of norm N(I) = 2 or 3; this will imply that Cl(OL) is trivial, and
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hence that Z[α] is a PID. If N(I) = 2, then I is a prime ideal dividing 2. By Dedekind’s
criterion there exists such an ideal I if and only if f(x) mod 2 has a linear factor. This is
not the case. Similarly f(x) mod 3 does not have a linear factor, showing that the field L
has class number 1.

We conclude with some more examples.

Example. Let L = Q(
√

10). Then CL =
√

10 < 4, so Cl(OL) is generated by the primes
dividing 2 and 3. Applying Dedekind’s criterion, we find that 2 = P 2

2 , where P2 = (2,
√

10),
and 3 = P3P

′
3, where P3 = (3, 1 +

√
10) and P ′3 = (3, 1 −

√
10). Thus Cl(OL) is generated

by [P2] and [P3]. The principal ideal (2 +
√

10) has norm 6, so in fact Cl(OL) is generated
by P2. If P2 is not principal, then Cl(OL) ∼= Z/2Z. However, if P2 = (a + b

√
10) then

a2 − 10b2 = ±2, implying that one of 2,−2 is a quadratic residue modulo 5. This is not the
case, so we find that P is not principal.

Example. Let L = Q(
√
−17). Then |DL| = 4× 17, so CL = 4

√
17/π < 6. Using Dedekind’s

criterion, we find that (2) = P 2
2 , where P2 = (2, 1 +

√
−17). We have (3) = P3P

′
3, where

P3 = (3, 1 +
√
−17) and P ′3 = (3, 1−

√
−17) (and these ideals are distinct). The ideal (5) is

prime. Thus Cl(OL) is generated by [P2] and [P3].
To understand the structure of this group, we look for relations between these ideals.

For example, we have N(1 +
√
−17) = 1 + 17 = 18 = 2 · 3 · 3. A calculation shows that

P2P
2
3 = (1+

√
−17), hence [P2] = [P3]−2 and Cl(OL) is generated by P3. If P2 is not principal,

then we will have Cl(OL) ∼= Z/4Z. The equation a2 + 17b2 = 2 is not soluble in integers a, b,
so indeed P2 is not principal.

7 Unit group and Dirichlet’s theorem

Let L be a number field of degree [L : Q] = n. We have proved the finiteness of the class
number of L. The second fundamental theorem that we will prove concerns the group O×L
of units in OL. Recall that these are precisely the elements α ∈ OL with N(α) = 1.

Theorem 7.1 (Dirichlet’s unit theorem). Let µL ⊂ O×L denote the group of roots of unity
in O×L . Then µL is a finite cyclic group and there is an isomorphism O×L ∼= µL × Zr+s−1.

In fact, the proof will show more. Let τ1, . . . , τr : L → R denote the distinct real
embeddings of L, and let σ1, σ1, . . . , σs, σs : L → C be the distinct complex embeddings.
Define a map

` : O×L → Rr+s

by the formula

`(α) = (log(|τ1(α)|), . . . , log(|τr(α)|), 2 log(|σ1(α)|), . . . , 2 log(|σs(α)|)).

Then ` is group homomorphism of abelian groups, and its image is contained inside the
hyperplane

H = {(x1, . . . , xr+s) ∈ Rr+s |
r+s∑
i=1

xi = 0}.
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This inclusion expresses the identity (for α ∈ O×L ):

0 = logN(α) =
r∑
i=1

log(|τi(α)|) + 2
s∑
i=1

log(|σi(α)|).

The proof of Theorem 7.1 will in fact show that ker ` = µL and that `(O×L ) ⊂ H is a lattice;
in particular, there is an isomorphism `(O×L ) ∼= Zr+s−1.

The proof of Theorem 7.1 is non-examinable, so we first focus on giving examples.
First, we see that the unit group is finite if and only if r + s − 1 = 0. There are two
possibilities: either r = 1, s = 0 (in which case L = Q) or r = 0, s = 1 (in which case L is an
imaginary quadratic field).

The first interesting case is when r = 2 and s = 0, which is that of real quadratic
fields. Let d > 1 be a squarefree integer and let L = Q(

√
d). Let σ : L → R be the

embedding which sends
√
d to the positive square-root of d. The existence of this embedding

shows that µL = {±1}. Consider the map `′ : O×L → R, α 7→ log |σ(α)|. From the above
discussion, we see that `′ is a homomorphism with kernel µL, and its image is a lattice in
R. In particular, there is exactly one unit α ∈ O×L such that σ(α) > 0, log(|σ(α)|) > 0, and
O×L = {±αn | n ∈ Z}. We call α the fundamental unit of L. Equivalently, α ∈ O×L is the
unique unit such that σ(α) > 1 and O×L = {±αn | n ∈ Z}.

How can we find the fundamental unit α? We first prove a simple lemma. In order
to simplify notation, we now identify L with its image in R (so σ is the identity embedding).

Lemma 7.2. 1. If d ≡ 2, 3 mod 4, let u = a+ b
√
d ∈ O×L satisfy u > 1. Then a ≥ b ≥ 1.

2. If d ≡ 1 mod 4, let u = 1
2
(a+ b

√
d) ∈ O×L satisfy u > 1. Then a ≥ b ≥ 1.

Proof. We treat each case in turn. First suppose that d ≡ 2, 3 mod 4. Let u = a −
√
db.

Then uu = ±1, hence u−1 = ±u and |u| < 1. Since 2a = u+u and 2b
√
d = u−u, we see that

a > 0 and b > 0, hence a ≥ 1 and b ≥ 1 (as a, b are integers). The equation (a/b)2 = d±1/b2

shows that a ≥ b (as d ≥ 2).
Now suppose that d ≡ 1 mod 4. Let u = 1

2
(a−b

√
d). Then uu = ±1, hence u−1 = ±u

and |u| < 1. Since a = u + u and
√
db = u − u, we see that a > 0 and b > 0, hence a ≥ 1

and b ≥ 1 (as a, b are integers). The equation (a/b)2 = d± 4/b2 again shows that a ≥ b (as
d ≥ 5).

We can now explain how to find the fundamental unit. First suppose that d ≡
2, 3 mod 4, and let α = a1 + b1

√
d be the fundamental unit. Write αk = ak + bk

√
d. Then

the relation bk+1 = a1bk + b1ak shows that the sequence b1, b2, . . . is strictly increasing. We
can therefore characterize the fundamental unit as follows: let b ≥ 1 be the least positive
integer such that db2 ± 1 = a2 is a perfect square, where a > 0. Then α = a + b

√
d is the

fundamental unit.
Now suppose d ≡ 1 mod 4, and let α = 1

2
(a1 + b1

√
d) be the fundamental unit. Write

αk = 1
2
(ak + bk

√
d). Then bk+1 = 1

2
(a1bk + b1ak). This shows that bk+1 ≥ bk, with equality

if and only if a1 = b1 = 1 and ak = bk. If a1 = b1 = 1 then the identity a2
1 − db2

1 = ±4
shows that we must have d = 5. Excluding the case d = 5 for the moment, we find that
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bk+1 > bk, and hence this sequence is strictly increasing. We can therefore characterize the
fundamental unit as follows: let b ≥ 1 be the least positive integer such that db2 ± 4 = a2 is
a perfect square, where a > 0. Then α = 1

2
(a+ b

√
d) is the fundamental unit.

We now return to the case d = 5. In this case we see that the sequence bk is at least
non-decreasing. Note that for each positive integer b there are at most two positive integers
a such that 1

2
(a+ b

√
d) is a unit. Using the characterization of the fundamental unit as the

least element β ∈ O×L such that β > 1, we see that we can characterize the fundamental unit
in this case as follows: let b ≥ 1 be the least positive integer such that db2 + 4 or db2 − 4
has the form a2, where a ≥ 1 is a positive integer; among these, choose the smallest possible
value of a. Then α = 1

2
(a+ b

√
d) is the fundamental unit.

Carrying this out in the case d = 5, we see that both d+ 4 and d− 4 are squares, and
that a fundamental unit is obtained by taking a = 1, hence α = 1

2
(1 +

√
5).

Some examples of fundamental units are shown in the following table.

d α

2 1 +
√

2

3 2 +
√

3

5 1
2
(1 +

√
5)

7 8 + 3
√

7

10 3 +
√

10

11 10 + 3
√

11

13 1
2
(3 +

√
13)

14 15 + 4
√

14

15 4 +
√

15

17 4 +
√

17

19 170 + 39
√

19

21 1
2
(5 +

√
21)

22 197 + 42
√

22

The examples show that even for relatively small values of d, the above procedure
may not be very efficient. There is a more efficient algorithm which allows one to write down
the fundamental unit in terms of the continued fraction expansion of

√
d. We do not discuss

this in this course.

7.1 *Proof of Dirichlet’s unit theorem*

The proof of Dirichlet’s unit theorem is again based on the geometry of numbers. As usual,
let σ1, . . . , σr, τ1, τ 1, . . . , τs, τ s denote the complex embeddings of L. We extend ` to a group
homomorphism ` : L× → Rr+s given by the formula

`(α) = (log |σ1(α)|, . . . , log |σr(α)|, 2 log |τ1(α)|, . . . , 2 log |τs(α)|).
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Then `(O×L ) is contained in the codimension 1 subspace H ⊂ Rr+s where all of the co-
ordinates sum to zero, because if α ∈ O×L then

log |σ1(α)|+ · · ·+ log |σr(α)|+ 2 log |τ1(α)|+ 2 log |τs(α)| = log |NL/Q(α)| = logN(α) = 0.

The geometry of numbers enters in the proof of the following lemma.

Lemma 7.3. Fix an integer k with 1 ≤ k ≤ r+s and α ∈ OL\{0}. Let `(α) = (a1, . . . , ar+s).
Then we can find β ∈ OL \ {0} satisfying the following conditions:

1. N(β) ≤ ( 2
π
)s
√
| disc(OL)|.

2. Let `(β) = (b1, . . . , br+s). Then bi < ai if i < k.

Proof. Let E ⊂ Rn = Rr × Cs be the region defined by the inequalities

|y1| ≤ c1, . . . , |yr| ≤ cr, |z1|2 ≤ cr+1, . . . , |zs|2 ≤ cr+s,

where the ci are positive real numbers chosen to satisfy the conditions

0 < ci < eai (i 6= k)

and

c1 . . . cr+s = (
2

π
)s
√
|DL|.

We apply Minkowski’s theorem to the lattice S(OL) and the compact region E in Rr × Cs.
The volume of E equals 2nA(S(OL)), so Minkowski’s theorem implies the existence of a
non-zero element β ∈ OL such that S(β) ∈ E. This element has the desired properties.

Corollary 7.4. Fix an integer k with 1 ≤ k ≤ r + s. Then there exists an element ε ∈ O×L
such that, writing `(ε) = (e1, . . . , er+s), we have ei > 0 if i 6= k and ek < 0.

Proof. Choose an arbitrary element α ∈ OL \ {0}. Applying Lemma 7.3 repeatedly, we can
find elements α1, α2, . . . such that N(αj) ≤ ( 2

π
)s
√
|DL| for all j and the i-entry of `(αj/αj+1)

is positive if i 6= k.
Since the elements αj are infinite in number and bounded in norm, there must exist

j < j′ such that (αj) = (αj′). This implies that αj/αj′ ∈ O×L . It has the required property
by construction.

Lemma 7.5. Let N ≥ 1 be an integer and let A ∈MN(R) be a matrix satisfying the following
conditions:

1. For each j = 1, . . . , N ,
∑N

i=1Aij = 0.

2. For each i, j = 1, . . . , N , we have Aij > 0 if i = j and Aij < 0 if i 6= j.

Then A has rank N − 1.
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Proof. Since the rows of A sum to zero, the rank is at most N − 1. We show that the
first N − 1 rows of A are in fact linearly independent. Suppose that there are real numbers
t1, . . . , tN−1, not all zero, such that

∑N−1
i=1 tiAij = 0 for each j = 1, . . . , N . After rescaling,

we can assume that there is k such that tk = 1 and ti ≤ 1 for all i = 1, . . . , N − 1. Then we
have

0 =
N−1∑
i=1

tiAik ≥
N−1∑
i=1

Aik >

N∑
i=1

Aik = 0.

This is a contradiction.

Lemma 7.6. Let B > 0 be a real number, and let XB = {α ∈ OL | ∀σ : L→ C, |σ(α)| ≤ B}.
Then XB is finite.

Proof. S(XB) ⊂ Rr × Cs is the intersection of a compact set with a lattice. It is therefore
finite.

Proposition 7.7. `(O×L ) is a lattice in H.

Proof. We first show that `(O×L ) spansH. By the corollary, we can find elements v1, . . . , vr+s ∈
`(O×L ) such that the i-entry of vj is strictly positive if i 6= j and strictly negative if i = j. We
claim that these vectors span H. This follows from Lemma 7.5. Indeed, let A ∈ Mr+s(R)
be the matrix with column j given by vj. Then A satisfies the hypotheses of that lemma, so
has rank r + s− 1.

Let us therefore choose vectors v1, . . . , vr+s−1 ∈ L(O×L ) which form a basis of H as
R-vector space. They span a lattice Λ ⊂ H. Let P ⊂ H denote the set of combinations∑r+s−1

i=1 tivi, where ti ∈ [0, 1] for each i = 1, . . . , r+ s− 1 (in other words, P is the closure of
a fundamental parallelotope). We observe that P ∩ `(O×L ) is finite. Indeed, if `(α) ∈ P then
|σ(α)| is bounded independently of the embedding σ : L→ C, so we can apply Lemma 7.6.

For any element x ∈ `(O×L ), we can write x in the form x = λ + p where λ ∈ Λ and
p ∈ P ∩ `(O×L ). It follows that the index N = [`(O×L ) : Λ] is finite. Lagrange’s theorem
implies that N`(O×L ) ⊂ Λ, hence Λ ⊂ `(O×L ) ⊂ 1

N
Λ. By the sandwich lemma, we find that

`(O×L ) ∼= Zr+s−1, and hence that `(O×L ) is a lattice in H.

We can finally complete the proof of Dirichlet’s unit theorem.

Theorem 7.8. The group µL of roots of unity in O×L is finite and cyclic, and there is an
isomorphism O×L ∼= µL × Zr+s−1.

Proof. Note that ker ` is contained in the set X1 of Lemma 7.6, so it is finite. It must
therefore be equal to µL, which is a cyclic group. Let u1, . . . , ur+s−1 ∈ O×L be elements which
project to a Z-basis of `(O×L ). We define a map f : µL × Zr+s−1 → O×L by the formula
(w, a1, . . . , ar+s−1) 7→ wua11 . . . u

ar+s−1

r+s−1 . This is an isomorphism.
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8 Cyclotomic fields

We are going to use cyclotomic number fields to study the Fermat equation. As a warm-up,
let’s see how to use number fields to find all the Pythagorean triples x2 + y2 = z2, where
x, y, z ∈ Z satisfy gcd(x, y, z) = 1. Note that x and y cannot both be even; and looking
modulo 4 shows that (without loss of generality, after switching x and y) we can assume
that x is odd and y is even.

Given such a triple, we can factor x2 + y2 = (x + iy)(x − iy) in Z[i]. I claim that
the ideals (x+ iy), (x− iy) of Z[i] are coprime (i.e. have no prime ideal factors in common).
Indeed, if P ⊂ Z[i] is a prime ideal dividing both, then P divides (2x) and (2y). If N(P ) = pf

then taking norms, we see that this forces p to divide 2x and 2y, hence to divide 2. This
would imply that z is divisible by 2, a contradiction.

This shows that (x+ iy) and (x− iy) are coprime ideals. Since their product (z)2 is
a square, (x + iy) must be the square of an ideal of Z[i]. Since Z[i] is a PID, we can write
(x + iy) = (a + ib)2 = (a2 − b2 + 2abi) for some a, b ∈ Z. In particular, x + iy is a multiple
of a2 − b2 + 2abi by a unit of Z[i]. Since we have assumed that x is odd and y is even, this
unit must be ±1, showing that x = a2 − b2, y = 2ab or x = b2 − a2, y = −2ab.

We now begin our study of cyclotomic fields. Let p be an odd prime number, which
will be fixed throughout this section.

Definition 8.1. Let ζp = e2πi/p ∈ C. The pth cyclotomic field is K = Q(ζp).

Since ζp is a zero of the polynomial Xp − 1, Q(ζp) is a number field.

Lemma 8.2. 1. The element 1− ζp ∈ OK satisfies N(1− ζp) = p and (1− ζp)p−1 = (p).
The ideal (1− ζp) ⊂ OK is prime.

2. The polynomial fp(x) = (xp − 1)/(x− 1) ∈ Z[x] is irreducible, and [K : Q] = p− 1.

Proof. The polynomial fp(x) has ζp as a zero. In fact, we can factor fp(x) =
∏p−1

i=1 (x− ζ ip).
This shows that [K : Q] ≤ p− 1. We have fp(1) = p =

∏p−1
i=1 (1− ζ ip).

We note that for each i = 1, . . . , p − 1, we have (1 − ζ ip) = (1 − ζp) as ideals of OK .
Indeed, we can write 1− ζap = (1− ζp)(1 + ζp+ · · ·+ ζa−1

p ), showing that 1− ζp divides 1− ζap .

Conversely, if ab ≡ 1 mod p then we have 1− ζp = 1− ζabp = (1− ζap )(1 + ζap + · · ·+ ζ
a(b−1)
p ),

showing that 1− ζap divides 1− ζp.
We therefore have (1−ζp)p−1 = (p) as ideals ofOK . Taking norms gives N(1−ζp)p−1 =

p[K:Q]. This is only possible if N(1 − ζp) = p and [K : Q] = p − 1. In particular, fp(x) is
irreducible. Since the ideal (1− ζp) has prime norm, it is prime.

Observe that the roots of fp(x) in C are precisely the primitive pth roots of unity
ζap = e2πia/p, a = 1, . . . , p− 1. It follows that K = Q(ζp) has r = 0, s = (p− 1)/2. Moreover,
the elements 1, ζp, . . . , ζ

p−2
p are linearly independent over Q.

Lemma 8.3. We have disc(1, ζp, . . . , ζ
p−2
p ) = (−1)(p−1)/2pp−2.
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Proof. We use the formula disc(1, ζp, . . . , ζ
p−2
p ) = (−1)(p−1)(p−2)/2NL/Q(f ′p(ζp)). Let π =

1− ζp. We have already seen that fp(1) =
∏p−1

i=1 (1− ζ ip) = NK/Q(1− ζp) = p. On the other
hand, we have f ′p(x) = ((x− 1)pxp−1 − (xp − 1))/(x− 1)2, hence f ′p(ζp) = pζ−1

p /(ζp − 1). All
together this gives

disc(1, ζp, . . . , ζ
p−2
p ) = (−1)(p−1)/2pp−2,

as required.

It follows that Z[ζp] ⊂ OK is a finite index subring, this index being divisible at most
by powers of p.

Proposition 8.4. The ring of integers of Q(ζp) equals Z[ζp].

Proof. We have already seen that [OK : Z[ζp]] is a power of p. Therefore there exists N ≥ 1
such that pNOK ⊂ A. On the other hand, the residue field OK/(1 − ζp) has cardinality
p, so is isomorphic to Z/pZ. Therefore any element z0 ∈ OK can be written in the form
z0 = a0 + (1 − ζp)z1, where a0 ∈ Z and z1 ∈ OK . Applying the same argument to z1, we
can write z0 = a0 + (1 − ζp)a1 + (1 − ζp)

2z2, where a0, a1 ∈ Z and z2 ∈ OK . Proceeding
by induction, we see that for any n ≥ 1, each element z0 ∈ OK admits an expression
x = a0 +(1−ζp)a1 + · · ·+(1−ζp)n−1an−1 +(1−ζp)nzn, where a0, . . . , an−1 ∈ Z and zn ∈ OK .
Consequently, we have OK = Z[1− ζp] + (1− ζp)nOK . Taking n = (p− 1)N and using that
Z[ζp] = Z[1− ζp], we get OK = Z[ζp] + pNOK = Z[ζp], as required.

Corollary 8.5. The only prime l which ramifies in L is l = p.

Proof. We can apply Dedekind’s criterion. Since the polynomial xp − 1 has distinct roots
modulo l for any prime l 6= p, we see that any such prime l is unramified in L. The prime p
is ramified, since we have (p) = (1− ζp)p−1 and p− 1 > 1.

We now turn to the units of Z[ζp].

Lemma 8.6. The only roots of unity in Q(ζp) are ±ζap for a = 0, . . . , p− 1.

Proof. The group µK is cyclic; we wish to show it is cyclic of order 2p. We first show that
its order is not divisible by 4, i.e. that i 6∈ L. Otherwise, we would have (2) = (1 + i)2,
implying that 2 is ramified in K: this would contradict the corollary. The same argument
shows that the order of µK is not divisible by any odd prime l 6= p. It remains to check that
the order of µK is not divisible by p2. Suppose that there exists a primitive p2th root of
unity ω in L. The same argument as above then shows that the ideals (1− ωa), a ∈ Z/p2Z,
(a, p) = 1, are all equal. Evaluating the polynomial (xp

2 − 1)/(xp − 1) at x = 1 gives the
identity (1− ω)p(p−1) = (p). However, this would imply that N(1− ω)p(p−1) = p(p−1), hence
N(1− ω)p = p, a contradiction.

Lemma 8.7 (Kummer’s Lemma). Let u ∈ O×K. Then there exists a ∈ Z such that ζapu ∈
K ∩ R.

Note that [K : K ∩ R] = 2, and in fact K ∩ R = Q(ζp + ζ−1
p ).
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Proof. If σ : K → C is a complex embedding, then for all y ∈ K, we have σ(y) = σ(y); in
other words, σ commutes with the action of complex conjugation. It suffices to check this
for y = ζp, so σ(ζp) = ζap for some a = 1, . . . , p− 1. Then σ(ζp) = σ(ζ−1

p ) = ζ−ap = σ(ζp), as
required.

Let y = u/u. Then y is a unit and for any σ : K → C, σ(y) = σ(u)/σ(u) is a complex
number of absolute value 1. We have seen in the course of providing Dirichlet’s unit theorem
that this forces y to be a root of unity. We can therefore write u = ±ζkpu for some k ∈ Z.
After possibly replacing k by k + p, we can assume that k = 2g for some g ∈ Z.

We claim that u = ζ2g
p u (i.e. the sign is + and not −). Let v ∈ Z be an integer

such that u ≡ v mod (1 − ζp). Using the equality of ideals (1 − ζp) = (1 − ζ−1
p ), we see

that u ≡ v mod (1 − ζp). If the sign is − then we get v ≡ −v mod (1 − ζp), implying that
2 ∈ (1− ζp): a contradiction, since the norm of (1− ζp) is odd.

It follows that ζ−gp u = ζ−gp u, hence that ζ−gp u is real. This is what we needed to
prove.

We prove one more technical lemma that will be useful in a moment.

Lemma 8.8. For any α ∈ Z[ζp], there exists a ∈ Z such that αp ≡ a mod (p).

Proof. There exists b ∈ Z such that α ≡ b mod (1 − ζp). Then αp − bp =
∏p−1

i=0 (α − ζ ipb).
We have α − ζ ipb ≡ α − b ≡ 0 mod (1 − ζp), so we find αp ≡ bp mod (1 − ζp)p, hence mod
(1− ζp)p−1 = (p).

We are now going to use everything we have done so far to prove a special case of the
following theorem.

Theorem 8.9. Let n ≥ 3 be an integer. Suppose that there exist integers x, y, z such that
xn + yn = zn. Then xyz = 0.

In fact it was the hope of proving Fermat’s Last Theorem that motivated the devel-
opment of the theory of number fields. One reduces easily to the case where n = p is an odd
prime. Several mathematicians in the 1800’s had the idea of trying to prove Fermat’s Last
Theorem by factoring

xp + yp =

p−1∏
i=0

(x+ ζ ipy)

and trying to use unique factorization in the ring Z[ζp]. This led, for example, to Gabriel
Lamé’s premature announcement to the Académie des Sciences in Paris of a proof of the
theorem, which was based on the false assumption that unique factorization always holds.
(Lamé did give a correct proof in the special case p = 7.) Around the same time, Kummer
developed the theory of ideals in order to deal with precisely this difficulty.

The special case we are going to prove is the following.

Theorem 8.10 (Kummer, 1850). Let p be an odd prime, and suppose that there exist integers
x, y, z such that xp + yp = zp. Suppose further that p does not divide # Cl(OK), where
K = Q(ζp). Then xyz is divisible by p.
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If p does not divide the class number of Q(ζp), then we say that p is a regular prime.
For historical reasons, the case where (p, xyz) = 1 is referred to as the ‘first case’ of Fermat’s
Last Theorem. The ‘second case’ (where p divides xyz) can be treated using similar, but
more sophisticated, methods. (Kummer also dealt with the second case under the assumption
that p is a regular prime.)

Proof. After making a change of variable, we can assume that xp + yp + zp = 0 and that
x, y, z have no common factor. Factoring in Z[ζp], we get the relation

p−1∏
i=0

(x+ ζ ipy) = −zp,

hence the equality of ideals
p−1∏
i=0

(x+ ζ ipy) = (z)p.

We claim that the ideals appearing on the left-hand side of this equality are pairwise coprime.
Suppose for contradiction that P ⊂ Z[ζp] is a prime ideal dividing both (x+ζ ipy) and (x+ζjpy)
for some i < j. Then P contains the element (ζ ip−ζjp)y = ζ ip(1−ζj−ip )y, so P divides (1−ζp)(y).
If P divides (y), then it must also divide (x) and (z), implying that x, y, z have a common
factor, namely the unique prime factor of N(P ) – a contradiction. If P divides (1 − ζp),
then P = (1− ζp) and p divides z – another contradiction. Therefore the ideals are pairwise
coprime.

It follows that (x + ζpy) = Ip is the pth power of another ideal of OK . In particular,
[I]p = 1 in Cl(OK), hence [I] = 1 and I is principal (since p does not divide the order of
Cl(OK), by assumption). Let I = (δ). Then we get a relation x + ζpy = uδp for some
u ∈ O×K , δ ∈ OK , hence x+ ζpy = ζgprδ

p for some g ∈ Z and some real unit r ∈ O×K ∩R. By
Lemma 8.8, we can find a ∈ Z such that δp ≡ a mod (p). Altogether this gives us

ζ−gp (x+ ζpy) ≡ ra mod (p)

and (taking complex conjugates)

ζgp (x+ ζ−1
p y) ≡ ra mod (p),

hence
ζ−gp x+ ζ1−g

p y − ζgpx− ζg−1
p y ≡ 0 mod (p).

We now try to decide the value of g mod p. If g ≡ 0 mod p, then we get (ζp − ζ−1
p )y ≡

0 mod p, hence p divides y: a contradiction. Similarly if g ≡ 1 mod p, then we get p|x,
another contradiction. Therefore none of g,−g, g − 1, 1− g are congruent to 0 modulo p.

It follows that two of g,−g, g − 1, 1 − g must be congruent to each other modulo p.
Indeed, otherwise we can find β ∈ OK such that

β = ζ−gp
x

p
+ ζ1−g

p

y

p
− ζgp

x

p
− ζg−1

p

y

p
.
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The elements ζp, ζ
2
p , . . . , ζ

p−1
p form an integral basis for OK , so this would imply that x

p
∈ Z,

a contradiction.
If g ≡ −g mod p or g ≡ g − 1 mod p, then g ≡ 0 mod p or 1 ≡ 0 mod p. Neither of

these possibilities can occur. Treating the other cases in the same way, we see that we must
have 2g ≡ 1 mod p, leading to a relation

pζgpβ = x+ ζpy − ζpx− y = (x− y)(1− ζp).

It follows that x ≡ y mod p. Since our original equation xp + yp + zp = 0 was symmetric
in x, y, z, the same argument applied to y, z gives y ≡ z mod p, hence 3xp ≡ 0 mod p. If
p 6= 3 then we’re done. However, the case p = 3 can be treated directly (look at congruences
modulo 9 – we leave this as an exercise).
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