
FINAL EXAM SOLUTIONS–MATH 505A

1. Let L be a Galois extension of a field K of degree 4. What is the largest possible number
of fields there could be strictly between K and L? What is the smallest possible number
of such fields? Give examples showing that the bounds you claim are attained.

Such fields are in bijection to the proper nontrivial subgroups of the Galois group G of
L over K, which is either cyclic of order 4 or the product of two cyclic groups of order
2. In the first case, there is just one proper subgroup and accordingly only one such field
(example: K = Q, L = Q[e2πi/5]). In the second case, there are three such subgroups and
accordingly three such fields (example: K = Q, L = Q[

√
3,
√

5]). 2. Let ω = e2πi/7 be a
primitive 7th root of 1 in C and let K be the cyclotomic field Q[ω]. Find values of the
exponents a, b, c such that α = ωa +ωb +ωc generates a quadratic extension L of Q inside
K, by identifying the Galois group of K over Q explicitly and deciding to which subgroup
of this group L should correspond.

3. By using a formula in class for the second cohomology group H2(Zn, A) of the cyclic
group Zn with coefficients in a module A, together with facts about finite fields, show that
the only finite division algebras over the field F = Fp with a prime number p of elements
are finite extensions of F (Wedderburn’s Theorem).

Given such a division algebra D, results in class show that D has a maximal subfield
K = Fpn which is a finite (necessarily Galois) extension of Fp of degree n. Isomorphism
classes of such algebras with maximal subfield K are then parametrized by elements of
H2(Zn,K∗). By the formula for the cohomology groups of a finite cyclic group, this latter
group is isomorphic to the quotient F ∗p /N(K∗) of the group of nonzero elements in Fp
modulo the subgroup of norms of elements in K∗. by Hilbert’s Theorem 90, an element
of K∗ has norm 1 if and only if it is the (p − 1)st power of another element in K∗ (since
the Galois group of K over Fp is generated by the Frobenius automorphisms sending any
element to its pth power). Since there are (pn− 1)/(p− 1) distinct (p− 1)st powers in K∗,
there are exactly p − 1 distinct norms of elements, these norms filling out F ∗p . Thus the
H2 group is trivial and the only central simple algebras over Fp are matrix rings over it.
The only division rings finite over Fp are then its finite extension fields.

4. Let R = Z[
√
−3] be the subring of C generated by Z and

√
−3. Enlarge the the principal

ideal (2) of R to a prime ideal P and show that (2) lies strictly between P 2 and P . Deduce
that R is not a Dedekind domain.

The ideal (2) may be enlarged to P = (2, 1 +
√
−3), which is prime since the quotient of R

by this ideal has order two (it is Z2 with
√
−3 first adjoined and then identified with 1).

Taking product of generators, we see that P 2 ⊂ (2). The containment is proper because
P 2, being generated by 22, 2(1 +

√
−3, and (1 +

√
−3)2 = −2 + 2

√
−3, consists solely of

elements whose norms are multiples of 8. Hence (2) lies strictly between P 2 and P , as
claimed, whence the only prime ideal containing it is P and it is not a product of prime
ideals. Thus R cannot be a Dedekind domain (or just observe that it is not integrally
closed, violating the definition of Dedekind domain).



5. Give a necessary and sufficient condition for a Dedekind domain R to admit a finitely
generated nonfree projective module.

The condition is that the class group of R should not be trivial, or equivalently that R
should not be a PID.

6. Give an example of a finite non-Galois extension L of a field K such that there are more
fields between K and L than subgroups of the automorphism group G of L over K. Also
give an example of an infinite Galois extension L′ of a field K ′ such that there are more
subgroups of the Galois group G′ of L′ over K ′ than fields between K ′ and L′.

Probably the easiest example in the first case is K = Q, L = Q[21/3]. Here the auto-
morphism group is trivial, but there are two fields between K and L (namely K and L
themselves), so there are more fields than subgroups. In the second case, it was shown in
class that if K = Q and L is obtained from K by adjoining the square root

√
p of every

prime p, then the Galois group of L is an uncountable direct sum of copies of Z2. It has
more subgroups than there are subsets of L, so certainly more subgroups than intermediate
fields.

7. By looking at quotients of polynomial rings in infinitely many variables over a field,
give an example of a non-Noetherian, non-Artinian ring R such that every prime ideal of
R is maximal.

Let k be a field and take the quotient R = k[x1, x2, . . . ]/(x
2
1, x

2
2, . . . ). Then R has only

one prime ideal, namely (x1, x2, . . . ), which is maximal; but R is neither Noetherian nor
Artinian (its prime ideal is not finitely generated).

8. Classify the finite-dimensional semisimple algebras over C, the field of complex numbers.

These are just the finite direct sums of matrix rings over C.


