Lecture 3-7: Completions of rings

March 7, 2025

Lecture 3-7: Completions of rings

《 ■ > < ■ > ■
March 7, 2025

1/1

As indicated last time, I will show how to enlarge a DVR (and in fact any commutative ring) to a larger ring which is complete with respect to a certain topology; thus this larger ring can do many things that the original ring could not, just as completions of metric spaces can do many things the original metric spaces could not. I will give just a brief treatment of completions now, returning to them in much more detail next quarter.

Rather than give the general construction at the outset, I will warm up to it with a couple of examples. For any field K, it is well known that the only units in the polynomial ring K[x] are the nonzero constant polynomials. The power series ring K[[t]], consisting by definition of all formal power series $\sum_{i=0}^{\infty} a_i x^i$ with $a_i \in K$, has many more units; in fact any power series $\sum_{i=0}^{\infty} a_i x^i$ with $k_0 \neq 0$ is a unit. To see this, recall that $(\sum a_i x^i)(\sum b_i x^i) = \sum_{i=0}^{\infty} c_i x^i$, where $c_n = \sum_{i=0}^n a_i b_{n-i}$ (or take this as the definition, motivated by the distributive law for polynomials). If $a_0 \neq 0$, then we can take $b_0 = a_0^{-1}$; assuming inductively that b_0, \ldots, b_{n-1} have been defined, one can solve the equation $c_n = \sum_{i=0}^n a_i b_{n-i} = 0$ for b_n , since its coefficient is a_{0} .

・ロット (日本) (日本) (日本) (日本)

March 7, 2025

Similarly, the ring of Laurent series $\sum_{i=-m}^{\infty} a_i x^i$ (for some $m \in \mathbb{Z}$), studied in complex analysis, is actually a field. Now consider a variation of this construction. For p a fixed (positive) prime integer, consider the set of formal series $\sum a_i p^i$, where each $a_i \in [p] = \{0, ..., p-1\}$. To add two such series $s = \sum a_i p^i, t = \sum b_i p^i$, start with the sum $\sum (a_i + b_i) p^i$ and then replace each $a_i + b_i$ by a finite polynomial $\sum c_{ij} p^j$, where the c_{ij} again lie in [p]; (in effect just rewrite $a_i + b_i$ in base p). Combining terms in the resulting series, further rewrite $s + t = \sum (a_i + b_i) p^i$ as a single series $\sum d_i p^i$ with $d_i \in [p]$. Define the product st similarly.

イロン 不得 とくほ とくほ とうほ

This ring is called the ring of *p*-adic integers and is denoted \mathbb{Z}_p ; of course this must be carefully distinguished form the ring $\mathbb{Z}/p\mathbb{Z}$ of integers modulo *p*. Similarly, the ring of Laurent series $\sum_{i=m}^{\infty} a_i p^o$ with $a_i \in [p]$ is denoted \mathbb{Q}_p and called the ring of *p*-adic rationals. For example, in \mathbb{Z}_p we have $-1 = \sum_{i=1}^{\infty} (p-1)p^i$ and $(1-p)^{-1} = \sum_{i=0}^{\infty} p^i$.

ヘロン 人間 とくほ とくほ とう

More generally, let R be any commutative ring and let I be an ideal of R. The main example to keep in mind is the case where R is a DVR and M its maximal ideal. Define the *I*-adic topology on R by decreeing that a neighborhood of any point x is a subset of R containing the coset $x + I^n = \{x + i : i \in I^n\}$ for some n. A subset of R is then by definition open if and only if it is a neighborhood of all of its points. The ring operations in R are continuous with respect to this topology. A Cauchy sequence (r_i) of elements of R in this topology is then one such that for any *n* we have a positive integer N with $r_i - r_i \in I^n$ for any indices i, j > N.

I want to create a larger ring \hat{R} for which any Cauchy sequence (r_i) converges, so that there is $r \in R$ such that for every index n there is N with $r - r_m \in I^n$ for all m > N. To do this I use an inverse limit construction, as I did earlier when constructing Galois groups of infinite algebraic extensions. Start with the direct product $\prod_{i=0}^{\infty} R/l^i$ and take the subring \hat{R} consisting of all tuples (r_0, r_1, \ldots) such that $r_i \equiv r_i$ modulo l^i whenever i < j. Clearly \hat{R} is closed under the ring operations. In the two particular cases $R = \mathbb{Z}, I = (p)$ and R = K[x], I = (x) mentioned above one can check directly that \hat{R} becomes \mathbb{Z}_{p} and K[[x]], respectively. The ring operations are more complicated for \mathbb{Z}_p than they are for K[[x]] because \mathbb{Z} has no additive subgroup complementary to the subgroup $(p)^n = p^n \mathbb{Z}$, whereas K[x] admits a natural subgroup complementary to (x^n) .

э

ヘロン 人間 とくほ とくほ とう

In general there is an obvious map $R \to \hat{R}$, sending r to (r, r, ...); its kernel is 0 provided that $\cap I^n = 0$. If this map is an isomorphism then R is called *I*-adically complete. I will return to completions in much more detail next quarter, when I will verify that \hat{R} is indeed *I*-adically complete..

To get a flavor of what *I*-adic completion can do, let me mention one of the most basic and frequently used results, called Hensel's lemma.

Lemma

Let *R* be a commutative ring and *M* a maximal ideal in *R*. Let $f \in R[x]$ be a monic polynomial such that the reduction \overline{f} of *f* in (R/M)[x] admits a factorization \overline{gh} with \overline{g} , \overline{h} coprime polynomials. Then the image \hat{f} of *f* in $\hat{R}[x]$, with \hat{R} the *M*-adic completion of *R*, factors as \hat{gh} , where \hat{g} , \hat{h} have the same respective degrees as \overline{g} , \overline{h} .

イロト イポト イヨト イヨト

э

As an example, since 2 has the distinct square roots 3 and 4 modulo 7, it also has a square root in the ring \mathbb{Z}_7 of 7-adic integers.

As completion is more familiar in the context of metric spaces than arbitrary topological spaces I will indicate how to recover the topology introduced above on a commutative ring R from a metric. Let M be a maximal ideal of R with $\bigcap_n M^n = 0$. For $r \in R, r \neq 0$, set v(r) = n if $r \in M^n$ but $r \notin M^{n+1}$. Then the function $\rho: R \times R \to \mathbb{R}^+$ defined by $\rho(x, y) = 2^{-\nu(x-y)}$ if $x \neq y, \rho(x, x) = 0$, is easily seen to be a metric. In fact it satisfies a stronger version of the usual triangle inequality: for $x, y, z \in R$ we have $\rho(x,z) \leq \max(\rho(x,y),\rho(y,z))$ instead of just $\rho(x,z) < \rho(x,y) + \rho(y,z)$. Such a function is called an ultrametric, or non-Archimedean. The completion of R as a metric space then coincides with the completion \hat{R} with respect to the *M*-adic topology. (In case $R = \mathbb{Z}$ and M = (p) for p prime, one generally replaces 2 by p in the definition of ρ .) ヘロン 人間 とくほ とくほ とう

If in addition R is an integral domain with quotient field K, then any unit $u \in R$ does not lie in M, so that v(u) = 0. Thus one can extend v to K* by decreeing that $v(x^{-1}) = -v(x)$ and extend ρ to an ultrametric on K similarly. More generally, K is a field, then a function $f: K \times K \to \mathbb{R}^+$ with f(a+b) < f(a) + f(b) for $a, b, a + b \neq 0$, is called an absolute value. Given such a function the function $\rho: K \times K \to \mathbb{R}^+$ defined by $\rho(x, y) = 2^{-f(x-y)}$ for $x \neq y$, $\rho(x, x) = 0$, is a metric. The completion of K with respect to this metric is again a field. Two absolute values f, g are called equivalent if they induce the same topology on K. As examples, wih $K = \mathbb{Q}$, we have the usual absolute value and the *p*-adic absolute value v defined as in the previous slide, taking M = (p). An absolute value is called trivial if it induces the discrete topology on K.

The completions of \mathbb{Q} with respect to each of these absolute values are \mathbb{R} and \mathbb{Q}_p , respectively; note that the usual (Euclidean) topology on \mathbb{Q} is *not* induced from any *l*-adic topology on \mathbb{Z} since it is not defined by neighborhoods that are cosets of subgroups. A remarkable result called Ostrowski's theorem asserts that the only nontrivial absolute values up to equivalence on \mathbb{Q} are the ones given above. The completions \mathbb{R} and \mathbb{Q}_p are called places of \mathbb{Q} ; sometimes \mathbb{R} is denoted by \mathbb{Q}_∞ in this context.

The rings \mathbb{Z}_p and \mathbb{Q}_p of *p*-adic integers and rationals play a crucial role (as one might expect) in number theory. For example, the famous Hasse principle attempts to decide whether a polynomial equation with rational coefficients, possibly with several variables, has a solution in \mathbb{Q}^n if it has one in both \mathbb{R}^n and \mathbb{Q}_p^n for all *p*.