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As indicated last time, I will show how to enlarge a DVR (and in
fact any commutative ring) to a larger ring which is complete
with respect to a certain topology; thus this larger ring can do
many things that the original ring could not, just as completions
of metric spaces can do many things the original metric spaces
could not. I will give just a brief treatment of completions now,
returning to them in much more detail next quarter.
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Rather than give the general construction at the outset, I will
warm up to it with a couple of examples. For any field K , it is well
known that the only units in the polynomial ring K [x ] are the
nonzero constant polynomials. The power series ring K [[t ]],
consisting by definition of all formal power series

∑∞
i=0 aix i with

ai ∈ K , has many more units; in fact any power series
∑∞

i=0 aix i

with k0 ̸= 0 is a unit. To see this, recall that
(
∑

aix i)(
∑

bix i) =
∑∞

i=0 cix i , where cn =
∑n

i=0 aibn−i (or take this
as the definition, motivated by the distributive law for
polynomials). If a0 ̸= 0, then we can take b0 = a−1

0 ; assuming
inductively that b0, . . . ,bn−1 have been defined, one can solve
the equation cn =

∑n
i=0 aibn−i = 0 for bn, since its coefficient is

a0.
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Similarly, the ring of Laurent series
∑∞

i=−m aix i (for some m ∈ Z),
studied in complex analysis, is actually a field. Now consider a
variation of this construction. For p a fixed (positive) prime
integer, consider the set of formal series

∑
aipi , where each

ai ∈ [p] = {0, . . . ,p − 1}. To add two such series
s =

∑
aipi , t =

∑
bipi , start with the sum

∑
(ai + bi)pi and then

replace each ai + bi by a finite polynomial
∑

cijpj , where the cij
again lie in [p]; (in effect just rewrite ai +bi in base p). Combining
terms in the resulting series, further rewrite s + t =

∑
(ai + bi)pi as

a single series
∑

dipi with di ∈ [p]. Define the product st similarly.
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This ring is called the ring of p-adic integers and is denoted Zp;
of course this must be carefully distinguished form the ring Z/pZ
of integers modulo p. Similarly, the ring of Laurent series∑∞

i=m aipo with ai ∈ [p] is denoted Qp and called the ring of
p-adic rationals. For example, in Zp we have −1 =

∑∞
i=1(p − 1)pi

and (1 − p)−1 =
∑∞

i=0 pi .
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More generally, let R be any commutative ring and let I be an
ideal of R. The main example to keep in mind is the case where
R is a DVR and M its maximal ideal. Define the I-adic topology
on R by decreeing that a neighborhood of any point x is a
subset of R containing the coset x + In = {x ++i : i ∈ In} for some
n. A subset of R is then by definition open if and only if it is a
neighborhood of all of its points. The ring operations in R are
continuous with respect to this topology. A Cauchy sequence
(ri) of elements of R in this topology is then one such that for any
n we have a positive integer N with ri − rj ∈ In for any indices
i, j > N.
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I want to create a larger ring R̂ for which any Cauchy sequence
(ri) converges, so that there is r ∈ R such that for every index n
there is N with r − rm ∈ In for all m > N. To do this I use an inverse
limit construction, as I did earlier when constructing Galois
groups of infinite algebraic extensions. Start with the direct
product

∏∞
i=0 R/I i and take the subring R̂ consisting of all tuples

(r0, r1, . . .) such that ri ≡ rj modulo I i whenever i < j. Clearly R̂ is
closed under the ring operations. In the two particular cases
R = Z, I = (p) and R = K [x ], I = (x) mentioned above one can
check directly that R̂ becomes Zp and K [[x ]], respectively. The
ring operations are more complicated for Zp than they are for
K [[x ]] because Z has no additive subgroup complementary to
the subgroup (p)n = pnZ, whereas K [x ] admits a natural
subgroup complementary to (xn).
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In general there is an obvious map R → R̂, sending r to (r , r , . . .);
its kernel is 0 provided that ∩In = 0. If this map is an isomorphism
then R is called I-adically complete. I will return to completions
in much more detail next quarter, when I will verify that R̂ is
indeed I-adically complete..

To get a flavor of what I-adic completion can do, let me
mention one of the most basic and frequently used results,
called Hensel’s lemma.

Lemma
Let R be a commutative ring and M a maximal ideal in R. Let
f ∈ R[x ] be a monic polynomial such that the reduction f̄ of f in
(R/M)[x ] admits a factorization ḡh̄ with ḡ, h̄ coprime
polynomials. Then the image f̂ of f in R̂[x ], with R̂ the M-adic
completion of R, factors as ĝĥ, where ĝ, ĥ have the same
respective degrees as ḡ, h̄.
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As an example, since 2 has the distinct square roots 3 and 4
modulo 7, it also has a square root in the ring Z7 of 7-adic
integers.

As completion is more familiar in the context of metric spaces
than arbitrary topological spaces I will indicate how to recover
the topology introduced above on a commutative ring R from a
metric. Let M be a maximal ideal of R with ∩nMn = 0. For
r ∈ R, r ̸= 0, set v(r) = n if r ∈ Mn but r /∈ Mn+1. Then the function
ρ : R × R → R+ defined by ρ(x , y) = 2−v(x−y) if x ̸= y , ρ(x , x) = 0, is
easily seen to be a metric. In fact it satisfies a stronger version of
the usual triangle inequality: for x , y , z ∈ R we have
ρ(x , z) ≤ max(ρ(x , y), ρ(y , z)) instead of just
ρ(x , z) ≤ ρ(x , y) + ρ(y , z). Such a function is called an ultrametric,
or non-Archimedean. The completion of R as a metric space
then coincides with the completion R̂ with respect to the M-adic
topology. (In case R = Z and M = (p) for p prime, one generally
replaces 2 by p in the definition of ρ.)
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If in addition R is an integral domain with quotient field K , then
any unit u ∈ R does not lie in M, so that v(u) = 0. Thus one can
extend v to K ∗ by decreeing that v(x−1) = −v(x) and extend ρ
to an ultrametric on K similarly. More generally, K is a field, then a
function f : K × K → R+ with f (a + b) ≤ f (a) + f (b) for
a,b,a + b ̸= 0, is called an absolute value. Given such a
function the function ρ : K × K → R+ defined by ρ(x , y) = 2−f (x−y)

for x ̸= y , ρ(x , x) = 0, is a metric. The completion of K with respect
to this metric is again a field. Two absolute values f ,g are called
equivalent if they induce the same topology on K . As examples,
wih K = Q, we have the usual absolute value and the p-adic
absolute value v defined as in the previous slide, taking M = (p).
An absolute value is called trivial if it induces the discrete
topology on K .
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The completions of Q with respect to each of these absolute
values are R and Qp, respectively; note that the usual
(Euclidean) topology on Q is not induced from any I-adic
topology on Z since it is not defined by neighborhoods that are
cosets of subgroups. A remarkable result called Ostrowski’s
theorem asserts that the only nontrivial absolute values up to
equivalence on Q are the ones given above. The completions R
and Qp are called places of Q; sometimes R is denoted by Q∞ in
this context.
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The rings Zp and Qp of p-adic integers and rationals play a
crucial role (as one might expect) in number theory. For
example, the famous Hasse principle attempts to decide
whether a polynomial equation with rational coefficients,
possibly with several variables, has a solution in Qn if it has one in
both Rn and Qn

p for all p.
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