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Previously I have considered a class of rings slightly more general
than PIDs, namely Dedekind domains; now I round out the
course by looking at a very special class of PIDs, namely discrete
valuation rings. These are often called DVRs; but since they are
all in fact integral domains, they could with equal justification be
called DVDs (though that abbreviation has alas been taken).
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Definition; see Theorem 7, part 2, p. 757
A discrete valuation ring (or domain) is a PID with only one
nonzero prime ideal P.

Letting x be a generator of P, we know that every nonzero ideal
is a product of prime ideals, from which it follows at once that
the only nonzero ideals of R are the principal ones (xn)
generated by powers of x . Every nonzero element of R can be
uniquely written as xnu for nonnegative integer n and unit u. In
particular, R is a local ring with unique maximal ideal P. Taking
the quotient R/(xn) by any power of P gives a local Artinian ring.
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Such rings at first seem very special, which indeed they are; but
they are not as rare as you might think. To show why this is so, I
give a separate definition of valuation on a field.

Definition, p. 755
A (discrete) valuation on a field K is a map v : K ∗ → Z such that
v(xy) = v(x) + v(y) for x , y ∈ K ∗ and v(x + y) ≥min(v(x), v(y)) if
x , y , x + y ∈ K ∗. It is sometimes convenient to extend v to all of K
by decreeing that v(0) =∞. The valuation ring corresponding to
K and v is R = {x ∈ K ∗ : v(x) ≥ 0} ∪ {0}.

Any valuation v on K satisfies v(1) = v(1 · 1) = 0, whence
v(u) = 0 if and only if u is a unit in the valuation ring R (assuming,
as we do, that v is not identically 0) and choose x ∈ R with the
smallest positive value n = v(x). Then any nonzero y ∈ R has
0 ≤ v(yx−m) < n for some m, whence u = yx−m lies in R and must
be a unit.
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It follows that R is a PID such that any nonzero ideal takes the
form (xn) for a unique n (Proposition 5, p. 756). Indeed, given a
nonzero ideal I, choose y ∈ I with v(y) = n minimal. Then y = xnu
for some unit u, so that (y) = (xn). Any z ∈ I has v(z) ≥ n by the
choice of y , so v(zy−1) ≥ 0 and zy−1 ∈ R, z ∈ (y), and I = (y), as
claimed. Thus R is a PID with unique prime ideal (x), so is a DVR
by the first definition, Conversely, if R is a DVR with nonzero prime
ideal P = (x), then I have already observed that every y ∈ R is
xnu for a unique unit u. Setting v(y) = n and extending v to K ∗

by decreeing that v(y−1) = −v(y), it is easy to check that v is a
valuation on K ∗ with valuation ring R. Thus DVRs are exactly the
valuation rings of fields. The generator x of the prime ideal P is
called a uniformizing or local parameter for R (p. 756).
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Next I show how to construct valuation rings without using
valuations. Given any PID R and a prime p ∈ R, let Rp be the
subring of the quotient field K of R consisting of all fractions a/b
with p 6 |b. It is easy to check that Rp is indeed a subring
containing R. Since R is a unique factorization domain, any
x ∈ K ∗ can be written as pna

b for some n ∈ Z and relatively prime
a,b ∈ R with neither a nor b a multiple of p. Then the map v
sending pna

b to n is easily seen to be a valuation on K with
valuation ring Rp.
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In particular, Rp is Noetherian and integrally closed in its quotient
field since any unique factorization domain has this property.
Thus Rp is also a Dedekind domain. In fact the same properties
follow from a weaker hypothesis.

Proposition; see Theorem 7, p. 757
Let R be a local Noetherian integral domain whose maximal
ideal M = (t) is principal. Then R is a PID (and thus also a DVR).
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Proof.
Let M0 = ∩∞i=1M i . Then M0 = MM0 and M0 is finitely generated;
since R is local with maximal ideal M, it follows from Nakayama’s
Lemma (proved last time) that M0 = 0. If I is a nonzero proper
ideal of R than there is n ∈ N with I ⊆ Mn, I 6⊆ Mn+1. Letting
a ∈ I,a /∈ Mn+1 we have a = tnu for some u ∈ R, which must be a
unit since u /∈ M. But then (a) = (tn) = Mn and I = (tn) is
principal, as desired.

With a little more work it can be shown that any Noetherian
integrally closed integral domain with exactly two prime ideals is
such that its maximal ideal is principal (Theorem 7, p. 757, part
5), so that any such ring is a DVR.
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The two simplest examples of DVRs arise from the two simplest
PIDs, namely R = Z and R = K [x ] with K a field. Letting p be a
prime number in the first case and the polynomial x in the
second, we get these examples. The construction of Rp from R is
called localization (since it produces a local ring). It goes far
beyond the setting of PIDs and prime elements, playing a crucial
role in commutative algebra (as you will see next term).
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I close by mentioning that there are many valuations that are
not discrete and consequently many valuation rings that are not
DVRs. Let T be a totally ordered additive abelian group, so that
T is both an abelian group and a totally ordered set such that if
t1 ≤ u1 and t2 ≤ u2 with ti ,ui ∈ T then t1 + u1 ≤ t2 + u2. Define a
(T -valued) valuation on a field K to be a map v : K ∗ → T
satisfying the above properties of a discrete valuation. The
subring R of K consisting of all k ∈ K ∗ with v(k) ≥ 0 together with
0 is such that for every k ∈ K ∗ either k ∈ R or k−1 ∈ R (or both). It is
called the valuation ring of K and v . The group T is called the
value group of v .
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Conversely, given a valuation ring R of a field K (containing
either k or k−1 for any k ∈ K ∗), we have the quotient
multiplicative group G = K ∗/U, where U is the group of units in R.
This group is totally ordered via the rule g ≥ h if gh−1 ∈ R. The
map sending any k ∈ K ∗ to its image in G is then a G-valued
valuation on K .with valuation ring R.
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Moreover, given any totally ordered abelian group T (written
multiplicatively), let L be any field. Form the group algebra LT ,
consisting of all finite formal linear combinations

∑
`iti with

`i ∈ L, ti ∈ T and the ti distinct. This ring is an integral domain; to
see this, let x =

∑
`iti , y =

∑
mjsj be two elements of it with all the

`i and mj nonzero. Order the terms so that t1 is the ≤-smallest of
the ti and s1 the ≤-smallest of the sj . Then t1s1 the unique
≤-smallest element of T arising in the product xy , with nonzero
coefficient `1m1, so that xy 6= 0. Thus LT has a quotient field K .
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One can now define a T -valued valuation v on the nonzero
elements of LT via v(

∑
`iti) = t1, where the terms of the sum are

arranged so that t1 is the ≤-smallest term appearing with `1 6= 0.
Extend v to K ∗ via v(x−1) = v(x)−1. Then one checks that v is
indeed a valuation with value group T (but we do not recover LT
from K as the valuation ring). Thus any totally ordered group is
the value group of some valuation.
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Next time I will show how to enlarge a valuation ring to
something called its completion; this is an algebraic analogue of
the completion of a metric space with very nice properties.
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