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Today I will concentrate on group cohomology and its
applications, particularly to finite-dimensional central simple
algebras over a field.

Lecture 3-12: Review, part 2 March 12, 2025 2 / 11



If G is a finite group and A is a G-module (that is, an abelian
group on which G acts linearly), then Hn(G,A), the nth
cohomology group of G with coefficients in A, is defined to be
Extn

ZG(Z,A), the nth Ext group of the trivial module Z over the
(integral) group ring ZG with coefficients in A. It can be
computed by taking a projective resolution of Z as a ZG-module
(for example the bar resolution), taking homomorphisms of each
term in to A, and then taking the cohomology groups of the
resulting cochain complex.
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Using this definition, it is easy to compute the cohomology
groups Hn(Zn,A )of the cyclic group Zn of order n. Letting σ be a
generator of this group and writing N = 1 + σ + . . .+ σn−1 we
have H0(G,A) = AG,Hn(G,A0 = NA/(σ − 1)A for odd
n ≥ 1,Hn(G,A) = AG/NA for even n ≥ 2, where AG denotes the
set of G-fixed vectors in A and NA denotes the set of vectors in A
sent to 0 by N. (In fact the formula H0(G,A) = AG holds for any
group G and module A.) This basic example should always be
kept in mind. Two very useful general facts are that
|A|Hn(G,A) = 0 for n > 0 if A is finite of order |A and
|G|Hn(G,A) = 0 for n > 0 if |G| is the order of G. In particular, if A
is finite and of order relatively prime to that of G, then
Hn(G,A) = 0 for all n > 0.
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In view of the bar resolution, one can also write down formula for
Hn(G,A) directly, making no reference to Ext groups or projective
resolutions. The detailed formula are not so important, but two
special cases are. First of all, H1(G,A) may be identified with the
group of crossed homomorphisms f : G→ A, satisfying
f (g1g2) = f (g1) + g1 · f (g2), modulo the subgroup or principal
crossed homomorphisms, of the form f (g) = g · a − a for some
fixed a ∈ A. Secondly, H2(G,A) may be identified with the group
of factor sets f : G2 → A, such that
f (g,h) + f (gh, k) = g · f (h, k) + f (g,hk), modulo coboundaries, of
the form b(g,h) = `(g) + g`(h)− `(gh) for some ` : G→ A. Any
factor set f can be normalized, so that it is replaced by another
factor set f ′ differing from it by a 1-coboundary, such
f ′(1,g) = f ′(g, 1) = 1 for all g ∈ G. In these formulas the group
operation in A is written additively throughout.
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The formulas for H1(G,A) and H2(G,A) lead directly to
group-theoretic interpretations of these cohomology groups:
H1(G,A) parametrizes A-conjugacy classes of complements of A
in a semidirect product E = A n G, where G acts on A in E
according to the specified action. Similarly, H2(G,A)
parametrizes equivalence classes of extensions of G by A, that is,
short exact sequences of groups of the form
1→ A→ E → G→ 1. Recall that the notion of equivalent
extension refers to the entire exact sequence and not just the
isomorphism class of the middle group E.
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Galois theory and group cohomology come together in an
especially beautiful way in the theory of finite-dimensional
central simple algebras over a fixed field F , equivalence classes
of these being parametrized by the Brauer group of F defined
last quarter. Here I developed the theory more deeply than in
the text, taking the time to prove some assertions only stated
there. Specifically, any central simple algebra over F is
equivalent to a central division algebra over F and then in turn is
equivalent to an algebra A over F admitting a maximal subfield
K which is finite Galois over F , such that the degree
[A : F ] = [K : F ]2. Any such algebra A admits a basis over K
indexed by the Galois group G of K over F , such that basis
elements eg multiply in A according to a factor set f ∈ H2(G,K ∗),
so that egeh = f (g,h)egh. The element eg acts on K by
conjugation as g does.
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Given two central simple algebras A,A′ over F with the same
maximal subfield K , addition of their respective factor sets f , f ′

corresponds to taking the equivalence class [A⊗F A′] of their
tensor product A⊗ A′, this latter operation in turn corresponding
to multiplication in the Brauer group. In this way one captures a
piece H2(G,K ∗) of Br(F), where G is the Galois group of K over F ;
but in order to capture the whole Brauer group one must take
into account all finite Galois extensions of F simultaneously. This is
done by looking at the inverse limit of Galois groups of finite
extensions of F , partially ordering such extensions by inclusion.
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A very important special case is that of F = R. Here F admits just
two Galois extensions, namely itself and C, the latter having
cyclic Galois group of order two. Accordingly there are just two
central division algebras over F up to isomorphism, namely F
itself and the ring H of quaternions, the latter corresponding to
the nontrivial element of H2(Z/2Z,C∗). Over Q, by contrast, one
gets not just ring of quaternions, but many, one for each choice
of nonzero a,b ∈ −Q+ such that ba−1 is not a square in Q. Such
rings are generated by two elements x , y over Q such that
x2 = a, y2 = b, xy = −yx .
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Thus the Brauer group Br(R) is cyclic of order two; of course the
Brauer group of any algebraically closed field F is trivial. The
Brauer group is also trivial for finite fields F and in a few other
cases. If it is finite but not trivial, then it must be cyclic of order
two, since a well-known theorem asserts that if a field F is such
that its algebraic closure K is a finite nontrivial extension of F ,
then in fact K is generated over F by a square root of −1.
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Next time I will review Dedekind domains, which are the
ring-theoretic analogues of finite Galois extensions K of Q. More
precisely, the Dedekind domain OK corresponding to the Galois
extension K consists of all elements of K integral over Q (roots of
a monic polynomial in Z[x ]).
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