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I will spend the entire last week on review of the course material,
beginning with Galois theory today. I will concentrate on
statements of theorems throughout; don’t worry about
memorizing their proofs, but be able to apply the theorems.
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If K and L are fields with K ⊂ L, then we say that L is an extension
of K ; its degree is [L : K ] = dimK L, the dimension of L as a vector
space over K . We are primarily interested here in the case where
[L : K ] is finite. If M is a field between K and L then we have
[L : K ] = [L : M][M : K ]; in particular, if L is finite over M and M is
finite over K , then L is finite over K . Set G = AutK (L), the group of
automorphisms of L fixing every element of K .
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The nicest finite extension are the Galois ones, where the order
|G| of G equals the degree [L : K ]; in general, we have
|G| ≤ [L : K ]. In this case we call G the Galois group of L over K . A
finite extension is Galois if and only if it is normal and separable. It
is normal if and only if it is a splitting field of some nonconstant
polynomial p ∈ K [x ], so that it is generated as a field (or as a
ring) by K and the roots of p and p splits as the product of linear
factors in L[x ]. Equivalently, it is normal if and only if every
irreducible polynomial in K [x ] with one root in L splits completely
in L[x ]. It is separable (algebraic) if and only if every y ∈ L satisfies
a polynomial in K [x ] with distinct roots in L. All extensions are
separable in characteristic 0, but not in characteristic p > 0 in
general; in characteristic p, the splitting field of an irreducible
polynomial q is separable over K if and only if q is not a
polynomial in xp. Any finite separable extension is primitive in the
sense that it is generated as a ring by a single element over the
basefield.
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If L is finite and Galois over K then we can completely
characterize the fields between K and L in terms of the
subgroups of its Galois group G; in particular, there are only
finitely many such fields. More precisely, we have the Galois
correspondence, which asserts that there is an
inclusion-reversing bijection between subgroups of G and fields
M with K ⊂ M ⊂ L. It sends a subgroup H to the subfield LH of
elements fixed by H in L, and a field M to the Galois group H of L
over M, which is a subgroup of G. Two fields M,M′ are conjugate
under the action of G if and only if their corresponding
subgroups H,H′ are conjugate in G; in particular, a field M is
normal over K if and only if its subgroup H is normal in G, in which
case the Galois group of M over K is the quotient G/H.
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The Galois group of the splitting field of a polynomial p is often
called the Galois group of p for short (over the basefield K ). Its
elements permute the roots of p and so may be thought of as
elements of the symmetric group Sn, where n is the degree of p.
Thus one can use group-theoretic properties of permutations to
compute Galois groups in certain cases. For example, if p ∈ Q[x ]
is irreducible of prime degree q and has exactly q − 2 real roots,
then its Galois group G is all of Sq. This follows since G must
contain an element of order q, since it acts transitively on the q
roots of p; but the only elements of Sq of order q are tht
q-cycles. G also contains a transposition of two roots,
corresponding to complex conjugation. Then it turns out that
any q-cycle and any transposition generate all of Sq.
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Fundamental examples to keep in mind include the cyclotomic
fields Q[e2πi/n] generated over the basefield Q by any primitive
nth root ωn of 1 in C and finite fields (necessarily of characteristic
p > 0, regarded as extensions of the field Fp = ZpZ of p
elements. In the first case the minimal polynomial of ωn over q is
the nth cyclotomic polynomial Φn(x) ∈ Z[x ], which is irreducible.
The Galois group of this polynomial is Z∗n, the group of
multiplicative units in Zn, the integers modulo n, a typical
automorphism sending ωn to ωa

n for some a. Recall that Z∗n is
cyclic of order pm − pm−1 if n = pm is an odd prime power. In the
second case there is a unique extension of Fp of degree n up to
isomorphism, which is the unique field Fpn of order pn. It is the
splitting field of xpn − x over Fp and has cyclic Galois group of
order n, generated by the Frobenius automorphism sending any
x to xp. (Also recall from last quarter that the multiplicative group
F∗[pn is cyclic of order pn − 1, for any prime p).
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The other high point of Galois theory is the Galois criterion, which
asserts that a polynomial p over a field K of characteristic 0 is
solvable by radicals (in the sense that there are expressions for all
of its roots using only field operations, elements of K , and nth
roots for some n) if and only if its Galois group G is solvable. This
last condition means that there is a finite sequence
G0 = G ⊃ G1 ⊃ · · ·Gm = 1 of normal subgroups Gi of G such that
all quotients Gi/Gi+1 are abelian. Since you saw last quarter that
the alternating group An is simple for n ≥ 5, it follows that no
polynomial p of degree n ≥ 5 whose Galois group is all of Sn or
An is solvable by radicals. As previously observed, polynomials of
any degree n exist over Q with Galois group Sn; no such
polynomial is solvable by radicals if n ≥ 5 (but universal radical
formulas exist for the roots of any polynomial of degree d ≤ 4
over a field of characteristic 0).
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A key step in the proof ot the Galois criterion is Hilbert’s Theorem
90, which asserts that a Galois extension with cyclic Galois group
G of order n over a field K with n distinct nth roots of 1 is
necessarily an extension by a single element α with αn ∈ K . This is
used to show that if a polynomial has solvable Galois group,
then it is solvable by radicals. Hilbert’s Theorem 90 can be
reformulated in terms of norms, as follows. Recall first that the
norm N(α) of an element α lying in a finite Galois extension L of a
field K with Galois group G is the product

∏
gα ∈ K of the

images of α under the elements of g, or the determinant of
multiplication by α, regarded as a linear transformation from L to
itself. Then Theorem 90 says that if G is cyclic and generated by
g, then the elements of L of norm 1 are exactly the quotients
gβ/β for some β ∈ L∗.
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It is also worth remembering that the Galois correspondence
can break down in various ways for non-Galois extensions, or for
infinite extensions. If L ⊃ K is not normal, then G = AutK L may
have order strictly smaller than [L : K ], in which case there are
typically too few subgroups of G to correspond to fields between
K and L. Even if L is Galois over K but not finite, there may also
be too many subgroups of G to correspond to intermediate
fields. For example, if K = Q and L is generated by the square
roots

√
pi of all primes pi ∈ Z, then G is an uncountable direct

sum of copies of Z/2Z, but [L : K ] is countable, so there are more
subgroups of G than even subsets of L.
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Likewise even a simple transcendental extension L = K (t) of an
infinite field K behaves badly in the sense that many proper
subgroups H of the Galois group G = PGL2(K ) of L over K are
such that LH = K .
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