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Continuing from last time, I now address the problem of
computing the cohomology of a group. The main tool is to
relate this to the cohomology of a smaller group.
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Definition, p. 805
Given groups G,G′, modules A,A′ over G,G′, respectively, and a
pair of homomorphisms ϕ : G′ → G, ψ : A → A′, we say that ϕ, ψ
are compatible if ψ(ϕ(g′)a) = g′ψ(a) for g′ ∈ G′,a ∈ A.

An easy example is the case G = G′, ϕ = 1, and ψ : A → A′ a
G-module map. Given compatible maps ϕ, ψ we get a natural
map λn from the cochain group Cn(G,A) defined last time to
Cn(G′,A′), by multiplying on the left by ψ and on the right by n
copies of ϕ. These maps commute with the coboundary
operators, so induce well-defined homomorphisms from Hn(G,A)
to Hn(G′,A′). The two most important examples are
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The restriction homomorphism (p. 805) attached to a
subgroup H , taking ϕ to be the inclusion of H into G and ψ
to be the identity map. Here we get a map Res from
Hn(G,A) to Hn(H,A), which on the cochain level just restricts
maps from Gn to Hn.
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The corestriction map (p. 806), again attached to a
subgroup H. Fixing representatives g1, . . . ,gm of the left
cosets of H in G, we get a map ψ : MG

H (A) → A sending f to
m∑

i=1
gi · f (g−1

i ). Since f is an H-module map, this last sum does

not depend on the choice of coset representatives gi ; one
easily checks that it is a G-module map, so that it is
compatible with the identity map on G. Since we have
Hn)(G,MG

H (A)) ∼= Hn(H < A) by Shapiro’s Lemma, we get a
map Cor: Hn(H,A) → Hn(G,A) such that if f ∈ homZH(Pn,A)
represents a cohomology class in Hn(H,A), then
Cor(f ) ∈ homZG(Pn,A) represents its image in Hn(G,A), where

Cor(f )(p) =
m∑

i=1

gi f (g
−1
i p),p ∈ Pn

In particular, for n = 0, this map just averages an H-fixed
element of A over G to produce a G-fixed element, as in the
proof of Maschke’s Theorem last quarter.
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The main payoff from the corestriction map emerges in the
following result.

Proposition 26, p. 807
If H has index m, then the composite Cor◦Res is multiplication by
m (as a map from Hn(G,A) to itself).

This follows at once from the explicit formula above for both Res
and Cor. If f ∈ homZH((Pn,A) happens to lie in homZG(Pn,A), then
all terms gi f (g

−1
i p) are equal to f (p), so that Cor◦Res(f ) = mf .
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In particular, since the cohomology of the trivial group is 0 in all
positive degrees, we deduce that if the group G has order m,
then mHn(G,A) = 0 for all G-modules A and all n > 0 (Corollary
27, p. 807). Combining with the earlier observation that
rHn(G,A) = 0 for all n ≥ 0 if rA = 0, we get a simple criterion for
the cohomology groups Hn(G,A) to be 0:

Corollary 28, p. 807
If G has order relatively prime to the least positive r with rA = 0,
then Hn(G,A) = 0 for all n > 0.
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I mention in passing two other examples of compatible maps.
Any G-module map A → A′ is compatible with the identity map
on G, so we get a natural homomorphism from Hn(G,A) to
Hn(G,A′) for any n. Also, if H is a normal subgroup of G and A is a
G-module, then the subgroup AH is a module for the quotient
group G/H in a natural way; then the projection map from G to
G/H is compatible with the inclusion of AH into A.. We therefore
get an inflation homomorphism Inf: Hn(G/H,AH) → Hn(G,A) for
all n (p. 806).
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Next I turn to an interpretation of the first cohomology group
H1(G,A). From the bar resolution (used for the first time) one
deduces that if f ∈ C1(G,A), then f is a cocycle if and only if
df (g,h) = gf (h) + f (g)− f (gh) = 0 or f (gh) = f (g) + gf (h), writing
the group operation in A additively. Such an f is often called a
crossed homomorphism from G into A (p. 814), since if the
action of G on A is trivial, then a crossed homomorphism is just a
homomorphism from G into A. Similarly, f is a coboundary if and
only if there is a ∈ A such that f (g) = ga − a for all g ∈ G. A
crossed homomorphism of this type is called principal. Thus we
can now describe H1(G,A) as the quotient of the group of
crossed homomorphisms by the subgroup of principal ones. If
the action of G on A is trivial, then there are no nonzero
coboundaries and H1(G,A) ∼= hom(G,A), the additive group of
homomorphisms of G into A.
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An interesting example arises from Galois theory. Let L be a finite
Galois extension of a field K with Galois group G. Then G acts on
the (abelian) multiplicative group L∗ by automorphisms.

Hilbert’s Theorem 90, p. 814

With notation as above, we have H1(G, L∗) = 0.

Indeed, if f is a crossed homomorphism from G into L∗, then the
linear independence over L of automorphisms of L shows that
there is y ∈ L∗ with x =

∑
g∈G

f (g)gy ̸= 0. For h ∈ G we then have

hx =
∑

g h(f (g))(hg)y =
∑

g f (hg)f (h)−1(hg)y =

(
∑

g f (hg)(hg)y)−1f (h)−1) = (
∑

g f (g)gy))f (h)−1 = xf (h)−1,
whence f is principal (using multiplicative notation for L∗).
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To interpret this result in Galois-theoretic terms I need to restrict to
a special case and make a definition. Recall that the norm N(x)
of any x ∈ L is the product

∏
g gx of its images under G. We have

N(x) = 0 if and only if x = 0 and N(xy) = N(x)N(y). Now
specialize to the case where G = ⟨g⟩ is cyclic, say of order n.

Then N(x) =
n−1∏
i=0

gix . Bearing in mind the formula given last time

for the cohomology of a cyclic group (and the multiplicative
notation which we are using for L∗), we see that H1(G, L∗) can be
interpreted in this case as the subgroup of L∗ consisting of
elements of norm 1, modulo the subgroup of elements of the
form gx/x for some x ∈ L∗.
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Hence every element of L∗ of norm 1 is of the form gx/x for some
x ∈ L∗. This last statement is also often called Hilbert’s Theorem
90, since it is what he actually proved in 1897. Now specialize
even further, down to the case where K contains n = |G| distinct
nth roots of 1. If α ∈ K is a primitive such root, then it is clear that
N(α) = 1, whence there is β ∈ L with gβ = αβ and βn = c ∈ K . We
then saw previously that L = Kk(β)βn ∈ K . We conclude that any
cyclic Galois extension of degree n of a field K with n distinct nth
roots of 1 is generated by a single nth root of an element of K .
This was a key step in the proof of the Galois criterion for
solvability by radicals.
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There is an additive version of the norm called the trace: If L is a
finite Galois extension of K with Galois group G, then the trace
T (x) =

∑
ggx is the sum of the Galois conjugates of x ; we once

again have T (x) ∈ K , but this time T (x + y) = T (x) + T (y). Hilbert’s
Theorem 90, now applied to the additive action of G on L, says
that given any map f : G → L with f (gh) = f (g) + gf (h) there is
z ∈ L with f (g) = gz − z. In particular, if G is cyclic, say generated
by g, and if T (x) = 0 for some x ∈ L, then x = gy − y for some
y ∈ L. Specializing even further, down to the case where the
degree [L : K ] is a prime p and K has characteristic p, the
element 1 has trace 0, so there is β ∈ L with gβ = β + 1, whence
βp − β = c is fixed by G and lies in K . The Galois conjugates β + i
of β are again the roots of its minimal polynomial over K , which
must be xp − x − c, and β generates L over K . Note that in this
case L cannot possibly be a pth root extension, since no such
extension is ever separable in characteristic p.
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Returning now to the general situation of a finite group G acting
on an abelian group A by automorphisms, recall from last
quarter that we have the semidirect product H = A ⋉ G, a group
with A as an abelian normal subgroup on which G has the given
automorphism action. The group G is then a subgroup of H
complementary to A, so that A ∩ G = 1 and H = AG. We might
ask what other complements G′ there are (if any) to A inside H,
so that G′ maps isomorphically onto G under the projection map
H/A → G. Any such complement replaces g ∈ G by g′ = f (g)g
for some f : G → A. The condition that g′h′ = (gh)′ then amounts
exactly to the crossed homomorphism condition on f , while a
coboundary replaces G by its conjugate a−1Ga for fixed a ∈ A.
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We conclude that

Proposition 33, p. 820
With notation as above, A-conjugacy classes of complements to
A in H are in bijection to elements of H1(G,A).

In particular, if A is also finite and has order relatively prime to
that of G, then any two complements of A in H are conjugate
under A.
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