Lecture 2-5: Cohomology of finite groups

February 5, 2025

Lecture 2-5: Cohomology of finite groups

February 5, 2025 1 / 1

∢ ≣⇒

I begin a new unit on group cohomology, following Chapter 17 of the text. In effect I will redo representation theory in a different context, namely that of \mathbb{Z} -modules rather than complex vector spaces.

Given a finite group G, a G-module will now be an abelian group A on which G acts linearly (see p. 798). The analogue of the complex group algebra $\mathbb{C}G$ is then the integral group ring $\mathbb{Z}G$, consisting of all integral combinations $\sum_{g \in G} z_g g$ with $z_g \in \mathbb{Z}$ (see p. 227). Clearly $g \in \mathbb{Z}$ where $g \in \mathbb{Z}$

(see p. 237). Clearly a G-module by the above definition is the same thing as a $\mathbb{Z}G$ -module. This time, however, nothing like Maschke's Theorem holds, for over \mathbb{Z} the only irreducible modules are cyclic groups of prime order; finite direct sums of these account for only a small fraction even of finite \mathbb{Z} -modules. Accordingly, I will not attempt to study the structure of $\mathbb{Z}G$ itself.

Instead I will focus on how a certain very particular $\mathbb{Z}G$ -module, namely the trivial module \mathbb{Z} (on which G acts trivially) and how it fits inside a larger $\mathbb{Z}G$ -module. More precisely, let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of $\mathbb{Z}G$ -modules. This induces an exact sequence $0 \rightarrow^G \rightarrow B^G \rightarrow C^G$ of their subgroups of elements fixed by G, corresponding to the exact sequence $0 \rightarrow \hom_G(\mathbb{Z}, A) \rightarrow \hom_G(\mathbb{Z}, B) \rightarrow \hom_G(\mathbb{Z}, C)$, but in general the map from B^G to C^G is not surjective, since \mathbb{Z} is not projective as a $\mathbb{Z}G$ -module.

・ロト ・ 同ト ・ ヨト ・ ヨト …

We therefore define $H^n(G, A)$ the *n*th cohomology group of G with coefficients in A, to be the Ext group $Ext_{\mathbb{Z}G}(\mathbb{Z}, A)$ defined last guarter. See the last sentence in the paragraph following equation 17.17 in the text on p. 799; the text gives a different definition of $H^{n}(G, A)$, which I will get to shortly. Thus $H^{0}(G, A) = A^{G}$, the subgroup of G-fixed elements, while the groups $H_n(G, A)$ for n > 0 may be viewed as the images of higher derived functors of the functor taking A to A^{G} . We can compute $H^{n}(G, A)$ by projectively resolving the trivial module \mathbb{Z} over $\mathbb{Z}G$, taking homomorphisms of each term into A, and then computing the cohomology of the resulting cochain complex.

If for example $G = \mathbb{Z}_n$ is cyclic of order n, then $\mathbb{Z}G$ identifies with the quotient $\mathbb{Z}[x]/(x^n - 1)$. Last quarter I computed the groups $\operatorname{Ext}_{\mathbb{Z}_n}^i(\mathbb{Z}_m, D)$, where m, n are positive integers with m|n and D is a \mathbb{Z}_n -module; here \mathbb{Z}_m is regarded as a \mathbb{Z}_n -module via the natural surjection $\mathbb{Z}_n \to \mathbb{Z}_m$.

イロン 不良 とくほう 不良 とうほう

Adapting the projective resolution of \mathbb{Z}_m used to make that computation, one finds that there is a periodic projective resolution $\{P_i\}$ of \mathbb{Z} in which $P_i = \mathbb{Z}[x]/(x^n - 1)$ for all *i*. The map from P_0 to \mathbb{Z} is the quotient map by the ideal (x - 1); the maps $P_{2m+1} \rightarrow P_{2m}$ are all multiplication by x - 1, while the maps $P_{2m} \rightarrow P_{2m-1}$ are all multiplication by $N = 1 + x + \ldots + x^{n-1}$ for $m \ge 1$.

Accordingly, we have

Example, p. 801

With notation as above, we have $H^{n}(G, A) = \begin{cases} A^{G} \text{ if } n = 0\\ {}_{N}A/(x-1)A \text{ if n is odd} \\ A^{G}/NA \text{ if n is even }, n \ge 2 \end{cases}$

where $_NA$ denotes $\{a \in A : NA = 0\}$. For general groups G, it turns out that there is a uniform way to resolve \mathbb{Z} by free modules. Write $R = \mathbb{Z}G$ and for n > 0 let F_n be the (n + 1)-fold tensor power $\otimes^{n+1}R$, the tensor products taking place over \mathbb{Z} . Here G acts on tensors by left multiplication on the first factor. Put $F_{-1} = \mathbb{Z}$. It is easy to check that F_n is free of rank $|G|^n$ over R for n > 0, a basis being given by the products $1 \otimes g_1 \otimes \cdots \otimes g_n$ as the g_i range over G.

Define the boundary operator $d_n: F_n \to F_{n-1}$ via

$$d_n(g_0 \otimes \cdots \otimes g_n) = \sum_{i=0}^{n-1} (-1)^i g_0 \otimes \cdots g_i g_{i+1} \otimes \cdots \otimes g_n + (-1)^n g_0 \otimes \cdots \otimes g_{n-1}$$

for n > 0, while $d_0(g) = 1$. An easy calculation shows that $d_{n-1}d_n = 0$. In more detail, there are four kinds of terms arising in $d_{n-1}d_n$: those involving a product $g_ig_{i+1}g_{i+2}$ of three successive group elements; those involving two products g_ig_{i+1}, g_jg_{j+1} of two successive elements; those involving one product of two successive g_i and omitting g_n ; and one term omitting both g_{n-1} and g_n . In all four cases, there are two cancelling contributions to each term; so $d_{n-1}d_n = 0$.

We also have a map $s_n : F_n \to F_{n+1}$ sending $g_0 \otimes \cdots \otimes g_n$ to $1 \otimes g_0 \otimes \cdots \otimes g_n$. An even easier calculation than the one on the last slide shows that $d_{n+1}s_n + s_{n-1}d_n = 1$, the identity map, whence if $x \in F_n$ lies in the kernel of d_n , then $x = d_{n+1}s_nx$ also lies in the image of d_{n+1} . Hence the F_n and d_n above define a projective resolution of \mathbb{Z} as a $\mathbb{Z}G$ -module (called the bar resolution (p. 799)).

イロト イポト イヨト イヨト 二日

Taking homomorphisms into A, we see that if we denote by $C^n(G, A)$ the set of maps from the Cartesian product G^n of n copies of G to A and if we define a new map $d_n : C^n(G, A) \to C^{n+1}(G, A)$ via

$$d_n f(g_1, \ldots, g_{n+1}) = g_1 \cdot f(g_2, \ldots, g_{n+1})$$

$$+\sum_{i=1}^{n}(-1)^{i}f(g_{1},\ldots,g_{i-1},g_{i}g_{i+1},g_{i+2},\ldots,g_{n})$$
$$+(-1)^{n+1}f(g_{1},\ldots,g_{n})$$

then $d_n d_{n-1} = 0$, so we can form the quotient ker $d_{n-1} / \text{ im } (d_n)$. The text defines $H^n(G, A)$ as this quotient (p. 800).

イロト イポト イヨト イヨト 二日

In practice, the formula on the previous slide is more useful for interpreting $H^n(G, A)$ than for computing it, though one immediate consequence is that if mA = 0 for some $m \in Z$ then $mH^n(G, A) = 0$ for all *n* (Proposition 20, p. 801).

From the long exact sequence oof Ext groups arising from any short exact sequence of modules we get

Theorem 21, p. 802

Given a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of *G*-modules, there is a long exact sequence

$$0 \to A^G \to B^G \to C^G \to H^1(G,A)_{\to} H^1(G,B) \to H^1(G,C) \to \cdots$$

A G-module M is called cohomologically trivial if $H^n(G, M) = 0$ for $n \ge 1$. It follows at once from the long exact sequence above that if $0 \to A \to M \to C \to 0$ is a short exact sequence of G-modules and M is cohomologically trivial then $H^{n+1}(G, A) \cong H^n(G, C)$ for all $n \ge 1$ (Corollary 22, p, 802). This last fact is often referred to as dimension shifting.

イロン 不良 とくほう 不良 とうほう

To produce examples of cohomologically trivial modules one needs a more general construction similar to the induced module construction of last quarter.

Definition, p. 803

If *H* is a subgroup of *G* and *A* is an *H*-module then the coinduced module $M = M_H^G(A)$ is defined to be $\hom_{\mathbb{Z}H}(\mathbb{Z}G, A)$; it consists of all maps $f : G \to A$ with f(hx) = hf(x) for $x \in G, h \in H$. This becomes a *G*-module via the recipe $(g \cdot f)(x) = f(xg)$ for $f \in M, x, g, \in G$.

This definition makes sense for any group G and subgroup H. If H has finite index in G then it is not difficult to check that $M_H^G(A)$ coincides with the induced module $\mathbb{Z}G \otimes_{\mathbb{Z}H} A$.

ヘロン 人間 とくほ とくほ とう

It turns out that the G-cohomology of the coinduced module $M_H^G(A)$ coincides with the H-cohomology of A. This is

Shapiro's Lemma, p. 804

For any subgroup H of G and any H-module A we have $H^n(G, M_h^G(A)) = H^n(H, A)$ for all $n \ge 0$.

Proof.

Since $\mathbb{Z}G$ is free over $\mathbb{Z}H$, any projective resolution $\{P_n\}$ of \mathbb{Z} over $\mathbb{Z}G$ is also a projective resolution over $\mathbb{Z}H$. Taking homomorphisms into A, we compute the cohomology group $H^{n}(H, A)$. Now we have a general isomorphism

 Φ : hom_{ZG}(P_n , hom_{ZH}(ZG, A)) \cong hom_{ZH}(P_n , A)

given by $\Phi(f)(p) = f(p)(1)$ for $f \in \hom_{\mathbb{Z}G}(P_n, \hom_{\mathbb{Z}H}(\mathbb{Z}G, A)), p \in P_n$. The inverse map Ψ has $\Psi(f)(p)(g) = f(gp)$, which makes sense since P_n is a G-module. The isomorphism commutes with the cochain maps, so defines an isomorphism of the cohomology groups, as desired.

Coinducing from the trivial subgroup, we deduce that $M_1^G(A)$ is cohomologically trivial for any abelian group A.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・