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| begin a new unit on group cohomology, following Chapter 17
of the text. In effect | will redo representation theory in a different
context, namely that of Z-modules rather than complex vector

spaces.
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Given a finite group G, a G-module will now be an abelian
group A on which G acts linearly (see p. 798). The analogue of
the complex group algebra CG is then the infegral group ring
Z.G, consisting of all infegral combinations "~ zgg with z5 € Z
geG
(see p. 237). Clearly a G-module by the above definition is the
same thing as a ZG-module. This fime, however, nothing like
Maschke’s Theorem holds, for over Z the only irreducible
modules are cyclic groups of prime order; finite direct sums of
these account for only a small fraction even of finite Z-modules.
Accordingly, | will not attempt to study the structure of ZG itself.
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Instead | will focus on how a certain very particular ZG-module,
namely the trivial module Z (on which G acts tfrivially) and how it
fits inside a larger ZG-module. More precisely, let

0— A— B— C — 0be ashort exact sequence of ZG-modules.
This induces an exact sequence 0 —— B — C€ of their
subgroups of elements fixed by G, corresponding to the exact
sequence 0 — homg(Z, A) — homg(Z, B) — homg(Z, C), but in
general the map from B to C€ is not surjective, since Z is not
projective as a ZG-module.
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We therefore define H"(G, A, the nth cohomology group of G
with coefficients in A, to be the Ext group Ext;s(Z, A) defined last
quarter. See the last sentence in the paragraph following
equation 17.17 in the text on p. 799; the text gives a different
definition of H"(G, A), which | will get to shortly. Thus

HO(G, A) = AC, the subgroup of G-fixed elements, while the
groups Hn(G, A) for n > 0 may be viewed as the images of higher
derived functors of the functor taking A to A®. We can compute
H"(G, A) by projectively resolving the trivial module Z over ZG,
taking homomorphisms of each term into A, and then
computing the cohomology of the resulting cochain complex.

Lecture 2-5: Cohomology of finite groups February 5, 2025



If for example G = Zp is cyclic of order n, then ZG identifies with
the quotient Z[x]/(x" — 1). Last quarter | computed the groups
EXT/ZH(Zm, D). where m, n are positive integers with min and D is
Zn-module; here Z, is regarded as a Z,-module via the natural
surjection Zn — Zm.
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Adapting the projective resolution of Z, used to make that
computation, one finds that there is a periodic projective
resolution {P;} of Z in which P; = Z[x]/(x" — 1) for all i. The map
from Py to Z is the quotient map by the ideal (x — 1); the maps
Pomi1 — Pom are all multiplication by x — 1, while the mayps
Pom — Pom_1 are all multiplicationby N =1+ x + ...+ x"! for
m>1.
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Accordingly, we have

Example, p. 801

With notation as above, we have
ACifn=0

H(G,A) = ¢ NvA/(x — 1)AIif nis odd
AC/NAifniseven ,n> 2

where yA denotes {a € A: NA = 0}. For general groups G, it
turns out that there is a uniform way to resolve Z by free
modules. Write R = ZG and for n > 0 let F, be the (n+ 1)-fold
tensor power @R, the tensor products taking place over Z.
Here G acts on tensors by left multiplication on the first factor.
Put F_y = Z. It is easy to check that Fj is free of rank |G|” over R
for n > 0, a basis being given by the products 1 ® g1 ® --- ® gn as
the g; range over G.
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Define the boundary operator d, : Fn, — F,_7 via

n—1

An(Go® - ®Gn) = > _(~1)Go®" -+ 9iGi41®" - - @Gn+(—1)"Go®" - DG
i=0

for n > 0, while dy(g) = 1. An easy calculation shows that
dn_19n = 0. In more detail, there are four kinds of terms arising in
dn_1dn: those involving a product g;g;. 19,2 of three successive
group elements; those involving two products g;g;. 1, gigj41 of
tfwo successive elements; those involving one product of two
successive g; and omitting gn; and one term omitting both g,
and gn. In all four cases, there are two cancelling contributions
to each term; so d,_1dn = 0.
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We also have a map sp: Fn = Fpp sending gp ® -+ - ® gn TO

1® go® - ® gnh. An even easier calculation than the one on the
last slide shows that dy, . 15h + Sp_1dh = 1, the identity map.
whence if x € Fj lies in the kernel of dj, then x = dj . 1Shx also lies
in the image of a,. . Hence the F, and d, above define a
projective resolution of Z as a ZG-module (called the bar
resolution (p. 799)).
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Taking homomorphisms into A, we see that if we denote by
C"(G, A) the set of maps from the Cartesian product G" of n
copies of G to A and if we define a new map

dnh: CN(G,A) —» C"1(G, A) via

anf(Qr,---»9Gne1) = 91 - (92, -, Gnt1)
+Z 'O, 9i-1, 9iGi+1: Gi2s - - On)

+(=1)""f(gr, ..., gn)

then dnd,_1 = 0, so we can form the quotient ker d,_y/ im (dp).

The text defines H"(G, A) as this quotient (p. 800).
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In practice, the formula on the previous slide is more useful for
interpreting H"(G, A) than for computing it, though one
immediate consequence is that if mA = 0 for some m € Z then
mH"(G, A) = 0 for all n (Proposition 20, p. 801).

From the long exact sequence oof Ext groups arising from any
short exact sequence of modules we get

Theorem 21, p. 802

Given a short exact sequence 0 - A — B — C — 0 of
G-modules, there is a long exact sequence

0— A® - B¢ - C® - HY(G,A)LH(G,B) » H'(G,C) — - -
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A G-module M is called cohomologically frivial if H?(G, M) =0
for n> 1. It follows at once from the long exact sequence above
thatif0 = A— M — C — Qis a short exact sequence of
G-modules and M is cohomologically trivial then

HM (G, A) = H'(G, C) for all n > 1 (Corollary 22, p, 802). This last
fact is often referred to as dimension shifting.
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To produce examples of cohomologically frivial modules one
needs a more general construction similar fo the induced
module construction of last quarter.

Definition, p. 803

If His asubgroup of G and A is an H-module then the
coinduced module M = Mﬁf(A) is defined to be homzy(ZG, A); it
consists of all maps f : G — A with f(hx) = hf(x) for x € G, h € H.
This becomes a G-module via the recipe (g - f)(x) = f(xg) for
feM,x,geG.

This definition makes sense for any group G and subgroup H. If H
has finite index in G then it is not difficult to check that MS(A)
coincides with the induced module ZG @44 A.
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It furns out that the G-cohomology of the coinduced module
Mﬁ(A) coincides with the H-cohomology of A. This is

Shapiro’s Lemma, p. 804

For any subgroup H of G and any H-module A we have
H"(G, M,?(A)) = H"(H, A) foralln > 0.
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Since ZG is free over ZH, any projective resolution {P,} of Z over
Z.G is also a projective resolution over ZH. Taking
homomorphisms into A, we compute the cohomology group
H"(H, A). Now we have a general isomorphism

® : homyg(Pn, homyzy(ZG, A)) = homyy(Pn, A)

given by &()(p) = f(p)(1) for

f € homyc(Pn, homzy(ZG, A)), p € Pn. The inverse map W has
V(f)(p)(g) = f(gp). which makes sense since P, is a G-module.
The isomorphism commutes with the cochain maps, so defines
an isomorphism of the cohomology groups, as desired. Ol

v

Coinducing from the frivial subgroup, we deduce that M]G(A) is
cohomologicadally frivial for any abelian group A.
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