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I wrap up the treatment of Galois theory with an account of the
relationship between Galois groups and central simple algebras;
the latter were defined and studied briefly in my second lecture
on tensor products last term (on October 14).
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Let F be a field of characteristic 0. Recall from last term that a
central simple algebra over F is an algebra A containing a copy
of F as its center and admitting no proper two-sided ideals, such
that A is finite-dimensional over F . Last term I showed that if A
and B are two such algebras, then so is their tensor product
A ⊗F B and that A ⊗F Ao ∼= Mn(F), the ring of n × n matrices over
F , where n is the dimension of A over F . Here Ao is the opposite
algebra of A (coinciding with A as an F-vector space but with
multiplication such that if a,b ∈ Ao then ab = ba, computed in
A). Let M be an irreducible left A-module; such exists since for
example A has a left ideal L of minimal nonzero dimension over
F , and then M = L has no proper left subideal.
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Letting D be the ring homA(M,M) of A-endomorphisms of M, you
showed in a homework problem last term that D is a division ring,
which clearly contains F . Arguing as in the proof last term that
the group algebra CG of a finite group G is a direct sum of
matrix rings over C, one shows that A is isomorphic to the ring
Mm(D) of m × m matrices over D for some m. The irreducible
module M is in fact essentially unique, being isomorphic to any
minimal nonzero left ideal L of A, or to the space Dm of column
vectors over D of length m. Any finite-dimensional A-module is
isomorphic to a direct sum of copies of M.
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Now replace A by D, which is again central simple over F .
Enlarge F to a maximal subfield K of D (one not contained in any
other). The centralizer of K in D is then equal to K . Otherwise
there is x ∈ D commuting with K but not in it, which is necessarily
algebraic over K ; then K and x generate a subfield of D larger
than K . We know by the above that D ⊗F Do ∼= Mn(F),n = [D : F ].
Passing to the smaller tensor product D ⊗F K we get the ring
homK (D,D) of K -endomorphisms of D since D ⊗F Do is the ring
homF(D,D) of all F-endomorphisms of F and K is its own
centralizer in D.
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Computing dimensions over F we get
[D : F ][K : F ] = [D : K ][K : F ]2 = [D : K ]2[K : F ], whence
[D = K ] = [K : F ]: the degree [D : F ] = n is necessarily a square r2

and r = [K : F ] = [D : K ]. The field K is then a separable extension
of F (since F has characteristic 0). Let L be its Galois closure and
write s = [L : K ]. Passing from D to the matrix ring D′ = Ms(D), we
find that L ⊂ Ms(K ) ⊂ D′ (by looking at the action of L on itself by
K -linear transformations); also [D′ : F ] = r2s2 = [D′ : L]2. Arguing as
above with D and K , we see that L is a maximal subfield of D′

and equal to its own centralizer in D′.
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We are almost ready to bring in Galois theory. First we need

Theorem (Skolem-Noether)
Let B be a central simple F-algebra and A a simple algebra with
F central in A. Given any two F-algebra homomorphisms
f ,g : A → B there is an invertible b ∈ B with g(a) = bf (a)b−1 for
all a ∈ A. In particular, any F-automorphism of B is inner (given by
conjugation by some b ∈ B).
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Proof.
First suppose that B = Mn(F). Since A is necessarily central simple
over its center, it follows by above remarks that there is only one
irreducible A-module up to isomorphism and any
finite-dimensional A-module is a direct sum of copies of this
module. But now the space Fn of column vectors over F
becomes an A-module in two different ways, via the
homomorphisms f and g. Since the dimension of Fn is the same
in both module structures, they are isomorphic. The isomorphism
is implemented by conjugation by some invertible b ∈ B, so we
are done. In general, replacing B by B ⊗F Bo ∼= Mn(F) and
extending f ,g to maps f ⊗ 1,g ⊗ 1 : A ⊗F Bo → B ⊗F Bo, where 1 is
the identity map on Bo, we deduce that f ⊗ 1,g ⊗ 1 are
conjugate by some invertible c ∈ B ⊗F Bo centralizing 1 ⊗ Bo

(since both f ⊗ 1 and g ⊗ 1 fix 1 ⊗ Bo), so c lies in B ⊗ 1 ∼= B. This is
the desired result.
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With notation as above, let G be the Galois group of L over F .
Then L embeds in D′ via the inclusion map and its composition
with any g ∈ G, so there is an invertible element eg ∈ D′ such
that egℓe−1

g = g.ℓ for all ℓ ∈ L. Arguing as in the proof that distinct
automorphisms of a field are linearly independent as maps over
that field, we see that the eg are independent under left
multiplication by L as g runs over G, whence they form a basis of
D′ as a left L-module. Note that the eg are not uniquely
determined, since each could be multiplied by some nonzero
ℓg ∈ L. Note also that we do not necessarily have egeh = egh for
g,h ∈ G; instead we have egeh = ℓg,hegh for some nonzero
ℓg,h ∈ L.
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The upshot is that our central simple algebra D′ is what is
sometimes called the smash product of L and G (and sometimes
denoted L ∗ G). It is also called a crossed product. As a left
L-vector space, it is isomorphic to the group algebra LG. It also
carries a natural G-action such that g.eh = egh and is isomorphic
to LG as a G-module under this action. But it is not isomorphic to
LG as a ring and L does not lie in its center.
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Conversely, given any Galois extension L of a field F with Galois
group G and an element ℓg,h ∈ L∗ for every g,h ∈ G, we can
define an algebra A to have basis {eg : g ∈ G} as a left L-vector
space, while egℓe−1

g = g.ℓ for ℓ ∈ L,g ∈ G,eg,eh = ℓg,hegh for
g,h ∈ G. In order to be sure that A is associative, we must
choose the ℓg,h suitably; we will see later that the condition
amounts to a cocycle condition (which is always satisfied, for
example, if we set ℓg,h = 1 for all g,h). The change in the ℓg,h
that results when eg is replaced by ℓgeg for some ℓg ∈ L∗

amounts to a change by a coboundary. Whenever the algebra
A defined by these relations is associative, it turns out to be
central simple over F , by an easy argument (though typically it
will not be a division algebra).
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As an example, we now see that the division ring H of
quaternions, which has dimension 4 over its center R,
predictably must contain a copy of the only proper finite
extension of R, namely C, as well as an element such that
conjugation by preserves the copy of C om H, acting on it by
complex conjugation (the unique nontrivial element of the
Galois group G of C over R). Here the element e1 ∈ H
corresponding to the identity element of G can be taken to be 1
(indeed, this can always be done in any crossed product); the
other element e2 can be taken to be j. We have e2

2 = −1 ∈ C.
Had we taken e2

2 = 1 instead, we would still have gotten a
central simple algebra over R, but not a division ring.
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It is known, by the way, that even if the basefield F has
characteristic p > 0, any central simple division algebra D over F
admits a maximal subfield K separable over F , so that a suitable
matrix ring Ms(D) can always be realized as a crossed product. It
is also known that D itself need not be a crossed product; the
passage to a matrix ring Ms(D) is sometimes essential.

I will return to central simple algebras over a field next month,
applying the machinery of (Galois) group cohomology to them.
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