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Returning to noncommutative rings, I will treat a topic omitted
from my coverage of representation theory last term, namely
the theory of semisimple Artinian rings (covered in section 18.2 of
Dummit and Foote, though my treatment will be somewhat
different). Semisimple Artinian rings include group algebras over
any field of characteristic 0, not just C, and many other
examples.
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The basic definition is

Definition
A (noncommutative) ring R is called (left) Artinian if every
descending chain L1 ⊃ L2 ⊃ . . . of left ideals of R stabilizes, so
that Ln = Ln+1 = . . . for some n; equivalently, if every nonempty
collection of left ideals has a minimal element. We say that R is
semisimple Artinian if in addition there are no nonzero nilpotent
two-sided ideals I of R, that is, ideals I such that Ik = 0 for some k .

Note that Dummit and Foote use the phrase “with minimum
condition” instead of Artinian, reserving the Artinian terminology
for commutative rings (see sections 16.1 and 16.2). I will show
shortly that semisimple left Artinian rings are the same as
semisimple right ones. For now observe that every
finite-dimensional algebra A over a field F and in particular any
(finite) group algebra over a field) is automatically left and right
Artinian.
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For future reference I note that the parallel condition (that every
ascending chain of left ideals stabilizes, or that every nonempty
collection of left ideals has a maximal element) also has a
name; rings satisfying it are called left Noetherian, or just
Noetherian if they are commutative. Next term you will see that
for commutative rings the Noetherian condition is exactly what is
needed to make a lot of theorems work; though it is a strong
one, there is a huge variety of important and interesting rings
satisfying it. By contrast, Artinian rings (both commutative and
noncommutative) are much more specialized; in fact every left
Artinian ring turns out to be left Noetherian as well.
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The notion of irreducibility of a module, which is not very useful
for general rings, turns out to play a key role for Artinian ones.
Recall some terminology from last quarter: given a left R-module
M, its endomorphism ring, denoted EndRM, consists of the
R-module maps from M to itself. In homework last quarter, you
proved Schur’s Lemma in its general context: it asserts that
EndRM is a division ring if M is an irreducible R-module.
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The first main result is the following. Recall that a ring R is called
simple if it has no nonzero proper two-sided ideals. A simple
commutative ring is a field, but a simple noncommutative ring
need not be a division ring.

Theorem
Any simple left or right Artinian ring R is isomorphic to Mn(D), the
ring of n × n matrices over a division ring D for a unique n and D,
up to isomorphism. The only irreducible left (or right) R-module M
is the space Dn of column (or row) vectors over D of length n.
Every R-module is a direct sum of copies of Dn.
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Proof.
This will take several steps. First let L be a minimal nonzero left (or
right) deal of R; such exists because R is Artinan. Then L is an
irreducible left R-module, so certainly R has such a module.
Given any irreducible left module M, its annihilator A(M),
consisting of all r ∈ R with rM = 0, is a two-sided ideal of R and so
must be 0. In particular there is m ∈ M with Lm ̸= 0; but then Lm is
a submodule of M, which must be all of M by irreducibility.
Moreover, the map L → M sending x to xm has kernel an ideal
strictly contained in L, whence this kernel must be 0 and M ∼= L as
a left R-module. In particular, any two irreducible left R-modules
are isomorphic.
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Proof.
Letting D = End M, we have seen that D is a division ring. I now
claim that given any m1, . . . ,mn ∈ M linearly independent over D
and any x1, . . . , xn ∈ M there is r ∈ R with rmi = xi for all i. This is
called the density condition. It is proved by induction on n; it is
clear for n = 1 (by irreducibility). If it holds for n and m1, . . . ,mn+1
are independent over D, then the range Nn+1 = R(m1, . . . ,mn+1)
of the action of R on the mi has tuples with any set of first n
coordinates. If the intersection of Nn+1 with
{(0, . . . ,0,m) : m ∈ M} is 0, then for every x1, . . . , xn ∈ M there is a
unique xn+1 ∈ M with (x1, . . . , xn, xn+1) ∈ Nn+1 and the map
sending (x1, . . . , xn) to xn+1 is an R-module map from Mn to M.
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Proof.
Applying Schur’s Lemma to each coordinate, one sees that

there are d1, . . . ,dn ∈ D with xn+1 =
n∑

i=1
xidi ; here I am regarding

M as a right vector space over D. But this is not possible, since
(m1, . . . ,mn+1) ∈ Nn+1 and the mi are independent over D.
Hence Nn+1 contains 0 × . . .× 0 × M, by irreduciblity and is all of
Mn+1, as claimed. Now if M had infinitely many elements
m1,m2, . . . independent over D, then the left ideals Li of R
consisting of all x with xmj = 0 for all j ≤ i would form a strictly
decreasing chain, which is impossible. Hence M ∼= Dn must be
finite-dimensional over D and R must act on M by the full set
Mn(D) of matrices on column vectors, this action commuting
with the right D-action on the vectors Moreover R itself is a direct
sum of n copies of Dn (one for each of the n columns), so Dn is
projective over R and every R-module is a direct sum of copies
of Dn.
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Proof.
Finally, the kernel of the R-action on M is trivial, so in fact
R ∼= Mn(D). The ring D is the endomorphism ring of the unique
irreducible R-module up to isomorphism, while n is uniquely
determined as the dimension of this module over D.

Conversely, any ring Mn(D) with D a division ring is simple (left
and right) Artinian: it is finite-dimensional over D, so satisfies the
descending chain condition on left or right ideals and is simple
because any proper two-sided ideal I would have to act
irreducibly on Dn and satisfy the density condition, whence
I = Mn(D). I mention that it is possible for two nonisomorphic
nondivision rings R, S to satisfy Mn(R) ∼= Mn(S) for some n.
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What about nonsimple Artinian rings? To discuss these I need a
general definition.

Definition
The Jacobson radical J of any ring R consists of all x ∈ R with
xM = 0 for all irreducible left R-modules M.

Clearly J is a two-sided ideal of R. We have the following handy
criterion for an element to lie in J.

Lemma
For x ∈ R we have x ∈ J if and only if 1 − yx has a left
multiplicative inverse in R for all y ∈ R.
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Proof.
An irreducible left R-module M is generated by any nonzero
element m; so any such module takes the from R/L for L a
maximal left ideal of R. If x ∈ R fails to lie in L, so that it does not
lie ln the annihilator of R/L, then L + Rx is a left ideal properly
containing L and so must be all of R, whence m + yx = 1 for
some y ∈ Rm ∈ L and m = 1 − yx ∈ L is not left invertible.
Conversely, if 1 − yx is not left invertible for some y ∈ R, then it lies
in a proper left ideal, which can be enlarged by Zorn’s Lemma
to a maximal left ideal L, which cannot contain x . Then x does
not lie in the annihilator of R/L.
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The reason for the above definition of semisimplicity emerges
from the following result.

Theorem
If R is left or right Artinian, then J is nilpotent. R is semisimple if
and only if J = 0.

The descending chain J ⊃ J2 ⊃ . . . must stabilize, say at P = Jn. If
P = P2 ̸= 0 then choose a minimal left ideal I with PI = P2I ̸= 0
and choose a nonzero x ∈ I with Px ̸= 0. Then Px is another left
ideal with P(Px) = Px ̸= 0, so by minimality we must have Px = Rx ,
so that x = zx , (1 − z)x = 0 for some z ∈ P. But then 1 − z is left
invertible by the previous result, whence x = 0, a contradiction.
Finally, if J = 0 and N is a nilpotent ideal of R, then for any
x ∈ N, y ∈ R we have (yx)k = 0 for some k , whence 1− yx has the
left inverse 1 − yx + (yx)2 − . . .± (yx)k−1, forcing x ∈ J, so 0 is the
only nilpotent ideal of R.
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The classification theorem for semisimple Artinian rings then reads

Theorem 4, p. 854
The ring R is semisimple left or right Artinian if and only if it is a
finite direct sum ⊕Mni (Di) of matrix rings over division rings Di . In
this case every irreducible left or right R-module is isomorphic to
Dni

i for some i and every left or right R-module is a direct sum of
copies of such modules.
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Proof.
Any such R has a minimal left ideal and so an irreducible left
module M1. The quotient R/K1 of R by the kernel of the action on
M is then a matrix ring Mn1(D1) for some division ring D1 by the
first main result. If K1 ̸= 0 then R/K1 has an irreducible left module
M2 and R/(K1 + K2) is a matrix ring Mn2(D2) for some D2.
Continuing in this way, we get irreducible left modules M1,M2, . . .
for R; letting Ii be the kernel of its action on ⊕i

j=1Mj the chain
I1 ⊃ I2 ⊃ . . . stabilizes, necessarily at 0, since J = 0. The density
condition implies the desired decomposition of R; since R is a
direct sum of simple left or right ideals, any irreducible R-module
is isomorphic to one of them and is projective, so that every
module is a direct sum of simple one-sided ideals.
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