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I now introduce a tool that is useful in useful for studying both
rings of integers and Galois groups of polynomials. I will use this
to prove that the obvious formula for Rn = OKn is in fact the
correct one, where Kn = Q[εn] = Q[e2πi/n], if n is prime (it actually
holds in general).
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Definition 3.1, p. 6
Given the ring of integers R = OK in a number field K of degree n
over Q and elements α1, . . . , αn of K , the discriminant
disc(α1, . . . , αn) of the αi is the square of the determinant of the
n× n matrix M whose ijth entry is σi(αj), where σ1, . . . , σn are the
distinct embeddings of the field K into C.

This quantity is 0 if the αi are dependent over Q, since then the
matrix M has dependent columns. Otherwise it makes sense as
an element of Q∗, since it is fixed by the Galois group G of the
Galois closure K̄ of K in C. It is nonzero because the embeddings
σi are independent over K̄ , by the same argument that
automorphisms in G are independent as functions on K̄ . It is
independent of the ordering of the αi or σj , since changing
either or both of these orderings changes the determinant by a
sign at most, which disappears on taking the square.
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If the αi form a Z-basis of R, then disc(α1, . . . , αn) is called the
discriminant of R and denoted disc(R). This makes sense since
any other Z-basis {βi} of R has (β1, . . . , βn) = (α1, . . . , αn)A for
some A ∈ GLn(Z), which must have determinant ±1. Finally, it
always lies in Z if the αi lie in R, since then it is an algebraic
integer fixed by G and so is rational. More generally, we define
disc(S) for any Z-submodule S of R of rank n as disc(α1, . . . , αn) for
any Z-basis (αi) of S; as with R this definition is independent of
the choice of basis.

Lemma 3.16, p. 9

With notation as above, we have disc(S) = disc(R)N(S)2.
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Proof.
Let α1, . . . , αn and β1, . . . , βn be Z-bases of R and S, respectively,
with (β1, . . . , βn) = (α1, . . . , αn)A for some A ∈ Mn(Z). The definition
of discriminant shows that disc(S) = disc(R) det2 B and it is not
difficult to check that N(S) = |det B|, so I am done.

As an immediate corollary, I get that the norm of a principal
ideal (α) of R is the absolute value of the norm N(α) of α, since
then if α1, . . . , αn is a basis of R, then αα1, . . . , ααn is a basis of (α)
and the discriminant of the second basis is N(α)2 times the
discriminant of the first one.
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An especially convenient basis to use in computing disc(R) or
disc(S) arises as follows. By the Primitive Element Theorem, we
have K = Q[α] for some α. Then D = disc(1, α, . . . , αn−1) 6= 0 since
the powers αi are independent over Q. Writing the Galois
conjugates of α as α1 = α, . . . , αn, we see that the ijth entry of the
matrix M in the definition of D is αj−1

i , whence M is a so-called
Vandermonde matrix. Its determinant is well known to be∏

i>j(αi − αj), since when regarded as a function of the variables
αi , it vanishes whenever two of these variables are equal and
the coefficient of αn−1

n αn−2
n−1 . . . α2 in it is 1.

Lecture 2-24: Discriminants and integers in cyclotomic fields; general Dedekind domainsFebruary 24, 2025 6 / 1



Letting f be the minimal polynomial of the αi over Q, we see that
D is the product of the squared differences of the roots of f . This
product of squared differences of the roots of a polynomial is
called the discriminant of the polynomial. It is 0 if and only if the
polynomial has two equal roots and is fixed by the Galois group
of the polynomial.
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Computing the discriminant of OK for a quadratic extension
K = Q[

√
d] with d a square-free integer, we get (2

√
d)2 = 4d if

d 6≡ 1 mod 4 and (1−
√

d
2 − 1+

√
d

2 )2 = d if d ≡ 1 mod 4. Here I am

using the basis (1,
√

d) in the first case and (1, 1+
√

d
2 ) in the

second one. The other specific field mentioned last time, namely
the cyclotomic field Kp corresponding to the prime p > 2, is
harder to compute, since I have not yet given a basis for its ring
of integers Rp. I first calculate the discriminant of a particular set
of elements in Rp and then show that this coincides with the
discriminant of Rp itself.
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For this purpose I need a general result.

Proposition 3.10, p. 8
Let K = Q[α] be a number field of degree n, f the minimal
polynomial of α over Q. Then
D = disc(1, α, . . . , αn−1) = (−1)(n

2)N(f ′(α)), where N(f ′(α)) denotes
the norm of f ′(α).

I showed above that
∏

i<j(αi − αj)
2, where α=α, . . . , αn are the

Galois conjugates of α, so that f =
∏n

i=1(x − αi). Evaluating f ′(α)
and N(f ′(α)) by the product rule, the result follows at once.
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I need a couple of other calculations. Let ε = e2πi/p be s primitive
pth root of 1 in C. Recall that the minimal polynomial of ε over Q
is the pth cyclotomic polynomial Φp = xp−1

x−1 = 1 + · · ·+ xp−1.

Lemma 8.3, p. 27

We have N(1− εi) = p for 1 ≤ i ≤ p − 1. The differences 1− εi are
unit multiples of each other. We have
disc(1, ε, . . . , εp−2) = (−1)(p

2)pp−2 = (−1)
p−1

2 pp−2.
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Proof.
The conjugates of ε are the powers εi . Then we have
N(1− ε) = (1− ε) · · · (1− εp−1) = g′(1) = p, by the product rule,
where g = xp − 1. The other differences 1− εi are conjugates of
1− ε, so have the same norm. Given any two differences
1− εi , 1− εj , there are integers a,b with ia = j, jb = i mod p,
whence 1− εi , 1− εj are multiples and thus unit multiples of each
other. To compute the discriminant, apply Proposition 3.10
above; here α = ε, f = Φp, f ′(α) = p εp−1

ε−1 , by the quotient rule.
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Now I can finally state the main result. Set S = Z[ε].

Proposition 8.4, p. 28
With notation as above, we have Rp = S = Z[ε].

Proof.

Lemma 8.3 shows that disc(S) = (−1)
p−1

2 pp−2. By Lemma 3.16,
the finite group Rp/S has order a power of p, whence there is N
with pNRp ⊂ S. Since N(1− ε) = p, the finite group Rp/(1− ε) has
order p, whence its elements are the cosets of 0, . . . ,p− 1. Given
z ∈ Rp we can write z = a0 + (1− ε)z1 for some a0 ∈ Z, z1 ∈ Rp and
then z = a0 + (1− ε)a1 + (1− ε2)z2 for some a1 ∈ Z, z2 ∈ Rp.
Continuing in this way, we write
z + a0 + (1− ε)a1 + (1− ε)2a2 + . . .+ (1− ε)(p−1)Nz(p−1)N for some
ai ∈ Z, z(p−1)N ∈ Rp. But now the power (1− ε)p−1 is a unit multiple
of p and pNRp ⊂ S, whence finally z ∈ S, as desired.
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The proof shows that the prime p is ramified in Rp; that is (as
defined last time) the ideal p is the (p − 1)st power of an ideal in
Rp. It turns out that p is the only prime that ramifies in Rp; in
general, the only primes in any R that can ramify are those
dividing the discriminant of R. As mentioned previously, the ring
Rn of integers in any cyclotomic field Kn = Q[e2πi/n] coincides
with Z[e2πi/n]. There is a slightly more complicated formula for
the discriminant of Rn for general n.
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I now shift gears, letting R be any Dedekind domain (that is, any
integral domain integrally closed in its quotient field such that
every ideal is finitely generated). I will show later that any
nonzero ideal of R is uniquely a product of prime ideals; for now I
take this property for granted and work out its consequences,
following section 16.3 of the Dummit and Foote text. Let R be a a
Dedekind domain, I a nonzero ideal of R.

Proposition 18, p. 768

If I = Pa1
1 · · ·P

an
n with the Pi distinct prime ideals, then

R/I ∼= S = R/Pa1
1 × · · · × R/Pan

n .
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Proof.
Setting Ii = Pai

i , one sees that the Ii are pairwise coprime, so that
Ii + Ij = R for i 6= j; indeed, a prime ideal containing Ii + Ij would
have to contain both Pi and Pj and thus be all of R since Pi and
Pj are maximal. Similarly, any two products of distinct Ii with no
common terms are coprime, whence by a calculation done last
quarter we have that the product

∏
Ii coincides with their

intersection ∩Ii . Letting Ji be the product of the Ij with j 6= i for all
indices i, one checks that the sum of the Jj is not contained in
any proper prime ideal so is all of R. Then for each i there is
ai ∈ R with ai ≡ 1 mod Ii (that is, ai − 1 ∈ Ii and ai ≡ 0 mod Ij for
j 6= i. Then the projection R → S sending r to the tuple (r̄ , . . . , r̄) of
images of r in the quotients R/Ii is both injective and surjective,
hence an isomorphism.

Lecture 2-24: Discriminants and integers in cyclotomic fields; general Dedekind domainsFebruary 24, 2025 15 / 1



Corollary 19, p. 768
Every ideal of R/I is principal (though R/I need not be a principal
ideal domain).

Proof.
By the proposition it is enough to show that every ideal of a
quotient R′ = R/Pn is principal if P is a prime ideal of R. Since the
ideals of R′ are the images of ideals of R containing Pn, it follows
that the image P̄ of P is the only prime ideal of R′ and every
nonzero ideal of R′ is a power of P̄. Thus we are reduced to
showing that P̄ is principal. By unique factorization in R, we
cannot have P = P2, so choose x ∈ P, x /∈ P2. The only possible
prime factorization of the ideal (x̄) generated by the image of x
in R′ is then P̄, whence P̄ is principal, as desired.
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