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| now infroduce a tool that is useful in useful for studying both
rings of infegers and Galois groups of polynomials. | will use this
to prove that the obvious formula for R, = Oy, is in fact the
correct one, where K, = Q[ep] = Q[e?™//7], if niis prime (it actually
holds in general).
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Definition 3.1, p. 6

Given the ring of integers R = O in a number field K of degree n
over Q and elements ay, ..., an of K, the discriminant

disc(ay, ..., an) of the «; is the square of the determinant of the

n x nmatrix M whose ijth entry is o;(«j), where o1, ..., 0n are the
distinct embeddings of the field K into C.

This quantity is O if the o; are dependent over Q, since then the
matrix M has dependent columns. Otherwise it makes sense as
an element of Q*, since it is fixed by the Galois group G of the
Gallois closure K of K in C. It is nonzero because the embeddings
o; are independent over K, by the same argument that
automorphisms in G are independent as functions on K. It is
independent of the ordering of the «; or o}, since changing
either or both of these orderings changes the determinant by a
sign at most, which disappears on taking the square.
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If the «; form a Z-basis of R, then disc(ay,...,an) is called the
discriminant of R and denoted disc(R). This makes sense since
any other Z-basis {5;} of Rhas (51,...,0n) = (aq,...,an)Afor
some A € GLy(Z), which must have determinant +1. Finally, it
always lies in Z if the «; lie in R, since then it is an algebraic
infeger fixed by G and so is rational. More generally, we define
disc(S) for any Z-submodule S of R of rank n as disc(ay, . .., an) for
any Z-basis («;) of S; as with R this definition is independent of
the choice of basis.

Lemma 3.16, p. 9
With notation as above, we have disc(S) = disc(R)N(S)?.
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Let ay,...,anand B4,..., Bn be Z-bases of R and S, respectively,
with (B1,...,8n) = (a1,...,an)A forsome A € Mp(Z). The definition
of discriminant shows that disc(S) = disc(R) det? B and it is not
difficult fo check that N(S) = |det B|, so | am done. O

As an immediate corollary, | get that the norm of a principal
ideal («) of R is the absolute value of the norm N(«) of a, since
thenif ay,...,anis a basis of R, then aay, ..., aan is a basis of (a)
and the discriminant of the second basis is N(«)? times the
discriminant of the first one.
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An especially convenient basis to use in computing disc(R) or
disc(S) arises as follows. By the Primitive Element Theorem, we
have K = Q|a] for some a. Then D =disc(1,a,...,a" ") # O0since
the powers «; are independent over Q. Writing the Galois
conjugatesof « s ay = a, ..., an, we see that the jjth entry of the
matrix M in the definition of D is o/ . whence M is a so-called
Vandermonde matrix. Ifs deTermlnon’r is well known to be

[Iisj(@i — o). since when regarded as a function of the variables
«a;, it vanishes whenever two of these variables are equal and

the coefficient of a7 'a? 2. .. ay initis 1.

n—1-
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Letting f be the minimal polynomial of the «; over Q, we see that
Dis the product of the squared differences of the roots of f. This
product of squared differences of the roots of a polynomial is
called the discriminant of the polynomial. It is O if and only if the
polynomial has two equal roots and is fixed by the Galois group
of the polynomial.
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Computing the discriminant of Ok for a quadratic extension
K = Q[Vd] with d a square-free integer, we get (2v/d)? = 4d if
d# 1mod4and (19 - 1+/dy2 — gif d = 1 mod 4. Here | am

using the basis (1, v/d) in the first case and (1, ”2\@) in the
second one. The other specific field mentioned last fime, namely
the cyclotomic field K, corresponding to the prime p > 2, is
harder to compute, since | have not yet given a basis for its ring
of integers Rp. | first calculate the discriminant of a particular set
of elements in R, and then show that this coincides with the
discriminant of Ry, itself.
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For this purpose | need a general result.

Proposition 3.10, p. 8

Let K = Q[«] be a number field of degree n, f the minimal
polynomial of a over Q. Then

D =disc(1,q,...,a™) = (1) N(f'()), where N(f'(a)) denotes
the norm of f'(«).

I showed above that [];_;(ce; — aj)z, where a—a,...,an are the
Galois conjugates of a, so that f = [][L,(x — «;). Evaluating f'(«)
and N(f'(a)) by the product rule, the result follows at once.
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| need a couple of other calculations. Let e = e2™/P be s primitive
pth root of 1in C. Recall that the minimal polynomial of e over Q
is the pth cyclotomic polynomial ¢p = =1 =14 ... 4 xP 1,

Lemma 8.3, p. 27

We have N(1 —€¢)=pfor1<i< p— 1. The differences 1 — ¢ are
unit multiples of each other. We have

_1
disc(1,e,...,eP2) = (-1 D pP-2 = (-1)*7 pP-2,
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Proof.

The conjugates of e are the powers ¢. Then we have
N(1—e)=(1—¢€)---(1—eP~1)=g(1) = p, by the product rule,
where g = xP — 1. The other differences 1 — ¢ are conjugates of
1 — e, so have the same norm. Given any two differences

1—¢€,1 -4, there are integers a, b with ia = j, jbo = i mod p,
whence 1 — ¢, 1 — ¢ are multiples and thus unit multiples of each
other. To compute the discriminant, apply Proposition 3.10

above; here a = ¢,f = &p, f'(a) = pf_]] , by the quotientrule. [

v
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Now | can finally state the main result. Set S = Z[e].

Proposition 8.4, p. 28
With notation as above, we have R, = S = Zl¢].

Proof.

Lemma 8.3 shows that disc(S) = (—1)”77]pp—2. By Lemma 3.16,
the finite group Ry,/S has order a power of p, whence there is N
with pVR, € S. Since N(1 — €) = p, the finite group Rp/(1 — ¢€) has
order p, whence its elements are the cosets of O,...,p— 1. Given
Z € Rp we can write z = ag + (1 —€)z; for some ag € Z, 7y € Rp and
thenz=ag + (1 — €)ay + (1 — €?)z, for some a; € Z,2, € Rp.
Continuing in this way, we write
z+ag+(1—e)a+(1—eay+...+ (1 —e)P-DNz,, 4y for some
Q; € Z,Zip—1)N € Rp. But now the power (1 — €)P~1is a unit multiple
of pand pNR, c S, whence finally z € S, as desired. O

V.
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The proof shows that the prime p is ramified in Rp: that is (as
defined last time) the ideal p is the (p — 1)st power of an ideal in
Rp. It turns out that p is the only prime that ramifies in Rp; in
general, the only primes in any R that can ramify are those
dividing the discriminant of R. As mentioned previously, the ring
R, of integers in any cyclotomic field K, = Q[e*™/"] coincides
with Z[e?™/1]. There is a slightly more complicated formula for
the discriminant of R, for general n.
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| now shift gears, lefting R be any Dedekind domain (that is, any
infegral domain integrally closed in its quotient field such that
every ideal is finitely generated). | will show later that any
nonzero ideal of R is uniquely a product of prime ideals; for now |
take this property for granted and work out its consequences,
following section 16.3 of the Dummit and Foote text. Let Rbe a a
Dedekind domain, | a nonzero ideal of R.

Proposition 18, p. 768

If | = P{" .. Pi» with the P; distinct prime idealls, then
R/I=S=R/P{" x -+ x R/PS".
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Setting I = P,."", one sees that the [; are pairwise coprime, so that
li + 1, = R for i # j; indeed, a prime ideal containing /; + /; would
have to contain both P; and P; and thus be all of R since P and
P; are maximal. Similarly, any two products of distinct /; with no
common terms are coprime, whence by a calculation done last
quarter we have that the product [[ ; coincides with their
infersection Ni;. Letting J; be the product of the J; with j # i for all
indices /i, one checks that the sum of the J; is not contained in
any proper prime ideal so is all of R. Then for each i there is

a; € Rwith g; = 1 mod J; (thatis, a; — 1 € [ and g; = 0 mod J; for

j # i. Then the projection R — S sending r to the tuple (r,...,r) of
images of r in the quotients R//; is both injective and surjective,
hence an isomorphism. O

v
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Corollary 19, p. 768

Every ideal of R/l is principal (though R// need not be a principal
ideal domain).

| A\

Proof

By the proposition it is enough to show that every ideal of a
quotient R = R/P" is principal if P is a prime ideal of R. Since the
ideals of R are the images of ideals of R containing P", it follows
that the image P of P is the only prime ideal of R’ and every
nonzero ideal of R’ is a power of P. Thus we are reduced to
showing that P is principal. By unique factorization in R, we
cannot have P = P2, so choose x € P, x ¢ P2. The only possible
prime factorization of the ideal (x) generated by the image of x
in R is then P, whence P is principal, as desired. O

v
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