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Continuing from last time, I prove existence and uniqueness of
prime factorizations for ideals rather than elements in rings of
integers. Let R = OK be such a ring.
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The key step in putting a group structure on the set of nonzero
ideals of R is the following one, in which I use the integral
closedness of R for the first time.

Proposition 4.6, p. 23
If I ⊂ R is a nonzero ideal then there is a nonzero ideal J of R such
that IJ = (α) is principal.
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Proof.
Let α ∈ I and let J = {β ∈ R : βI ⊂ (α). Clearly J is an ideal with
IJ ⊂ α; i will show that in fact IJ = (α). Letting L = 1

α IJ, I must show
that L = R. If not then by Lemma 4.5 last time there is γ ∈ K , γ /∈ R
with γL ⊂ R. Then γIJ = γαL ⊂ (α), whence γJ ∩ R ⊂ J. But we also
have (α) ⊂ I, whence J ⊂ L, whence γJ ⊂ γL ⊂ R. Thus γJ ⊂ J.
Since I observed last time that J is free over Z of finite rank, it
follows from the Cayley-Hamilton Theorem that γ is a root of a
monic polynomial over Z so lies in R, a contradiction.
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As a consequence, we can cancel nonzero ideals: if I, J, J′ are
nonzero ideals of R and IJ = IJ′, then J = J′. Indeed, choosing I′

with II′ = (α) principal, we see that IJ = IJ′ implies αJ = αJ′ and
then J = J′.

Corollary 4.8, p. 12
If I and J are ideals of R with I ⊃ J, then there is an ideal L with
IL = J.

If I ⊃ J, then choose a nonzero ideal I′ with II′ = (α) principal.
Then L = 1

αJI′ ⊂ R is an ideal and IL = J, as desired. We write I|J
and say that I divides J in this situation; thus I ⊃ J if and only if I|J.
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I can now prove the ideal factorization theorem.

Theorem 4.9, p. 12
Any nonzero ideal I is a product P1 . . .Pr of nonzero prime ideals
Pi ; this product is unique up to reordering the factors.

Lecture 2-21: Factorization of ideals in number fieldsFebruary 21, 2025 6 / 16



Proof.
As before, assume not and let I be a counterexample of minimal
norm, which cannot be prime. Choose a prime ideal P with
P ⊃ I; then we can write I = PJ for some ideal J ⊃ I. If I = J then
we can cancel I to get I = P, a contradiction; so J properly
contains I and must have smaller norm, whence J is a product of
prime ideals. Then I = PJ is also such a product, a contradiction.
If I = P1 . . .Pr = Q1 . . .Qs with the Pi and Qj prime, then P1 ⊃ I, so
P1 ⊃ Qi for some i, forcing P1 = Qi . We can then rearrange terms
in the second product and cancel P1 = Qi from both products;
continuing in this way, we see that r = s and the Qj are a
reordering of the Pi , as claimed; of course neither the Qj nor the
Pi need be distinct here.
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As mentioned above, there is no need to worry about units in this
result, unlike the corresponding result about elements of PIDs. I
now put a group structure on the set of nonzero ideals; there are
two ways to do this. One way is to introduce fractional ideals;
that is, R-submodules J of K such that αJ ⊂ R for some nonzero
α ∈ R. Then every nonzero ideal I of R has a multiplicative inverse
I−1 that is a fractional ideal, so that II−1 = R (choose J with
IJ = (α) and set I−1 = α”−1J). It is more common and useful,
however, to proceed differently, introducing an equivalence
relation ∼ just on nonzero ideals via I ∼ J if there is is α ∈ K ∗ with
αI = J. Multiplication is then well defined on equivalence classes
(as it was on equivalence classes for the Brauer group) and
every class has a multiplicative inverse. As every fractional ideal
is equivalent to an ordinary one, one can also define ∼ on
fractional ideals if desired. The equivalence class of an ideal (or
fractional ideal) I is denoted [I]; note that the second group
structure, unlike the first one, identifies any two principal ideals.
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The abelian group of ideal classes under multiplication is called
the class group of R and denoted Cl(R) or Cl(OK ). Its order is
called the class number of R (Definition 4.10, p. 13). The class
group is the group of nonzero fractional ideals modulo the
subgroup of principal ones. Clearly Cl(R) is trivial if and only if R is
a PID. The simplest example where this does not hold has
K = Q[

√
−5],R = Z[

√
−5]. Here the prime ideal P = (2, 1 +

√
−5)

generated by 2 and 1 +
√
−5 is not principal, since a generator x

of it would have to be a common divisor of 2 and 1 +
√
−5 and

thus have norm dividing N(2) = 4 and N(1 +
√
−5) = 6,

respectively, forcing its norm to be 1 or 2. But the only elements
of norm 1 ad ±1 and there are no elements of norm 2, so this is a
contradiction. To see that P is prime, observe first that moding R
out by (2) gives the ring extension Z2[

√
−5] of Z2; identifying

√
−5

with 1 (which of course is a square root of −5 modulo 2), one
sees that R/P ∼= Z2, whence P is indeed prime (and of norm 2).
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In a similar way one shows that Q = (3, 1 +
√
−5) is also

nonprincipal and prime in R, as is Q′ = (3, 1 −
√
−5). Since R fails

to be a PID, it is not surprising that it also fails to be a UFD: the
element 6 has two essentially distinct factorizations into primes,
namely 2 · 3 and (1 +

√
−5) · (1 −

√
−5). The ideal (6), by contrast,

must factor uniquely as a product of prime ideals. This product is
P2QQ′ = (2, 1 +

√
−5)(2, 1 −

√
−5)(3, 1 +

√
−5)(3, 1 −

√
−5). More

precisely, we have P2 = (2),QQ′ = (3). We say that the prime 2 in
Z ramifies in R, since the ideal it generates is the square of a
prime ideal. The prime 3 splits completely in R since the ideal it
generates is the product of distinct prime ideals. Finally, the
prime 11 in Z remains prime in R, since if 11 had a nontrivial
factor in R it would have to have norm 11, which is impossible.
We say that 11 is inert in R, since the ideal it generates is prime.
See Definition 5.2 on p. 14. The class number of R turns out to be
2. In general the class number of any OK is known to be finite
(Theorem 6.13, p. 21).
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The class numbers of the rings of integers R = OK of quadratic
fields K = Q[

√
d] where d is a square-free integer exhibit a

fascinating behavior. The most familiar case is d = −1, where
R = Z[i] is the ring of Gaussian integers, which probably some of
you have seen. This ring is well known to be a PID; in fact it is a
(norm-)Euclidean domain in the sense that given a,b ∈ R with
a ̸= 0, one can write b = qa + r for some q, r ∈ R with N(r) < N(a)
(this element r is not unique). The same argument that proves
this can be adapted to show that R is also a norm-Euclidean
domain for d < 0,d ≡ 1 mod 4, and |d| < 15, bearing in mind
that R = Z[1+

√
d

2 ] in these cases. All such R have class number 1.
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This pattern breaks when d = −15, however; here the class
number is 2, as it is when d = −5. There is a famous complete list
of all square-free d < 0 such that OK has class number 1, namely
−1,−2,−3,−7,−11,−19,−43,−67,−163. It is surprisingly
elementary (but too much of a digression here) to prove that the
class number is indeed 1 in all these cases; it is much harder to
prove that the list is complete. In fact, a proof of this was
announced in 1952, but not widely accepted at the time; later,
in 1967, another proof was given which was accepted. The
author of that proof (Harold Stark) later acknowledged,
however, that the original 1952 proof (of Karl Heegner) was in
fact correct. It is conjectured that there are only finitely many
values of d < 0 with a given class number for OK ,, but this is still
unknown. The fields Q[

√
d] for d < 0 are called (naturally

enough) imaginary number fields.
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For positive d, the situation is much less well understood. The
fields corresponding to such d are called real quadratic. Here
the class number is 1 in many more cases, conceivably infinitely
many. It is also possible for R = OK to be Euclidean but not
norm-Euclidean, so that there is another function d (not the
norm function) from R∗ to the natural numbers such that for any
a,b ∈ R with a ̸= 0 there are q, r with b = qa + r and d(r) < d(a).
You can get a good sense of why this case is so much harder
than the case d < 0 by looking at the formula for the norm:
N(a + b

√
d) = a2 − db2. For d > 0 this can be small even if a and

b are both large, so that it is harder to understand the set of
elements with a fixed norm than it is in the imaginary case. It is
known that in all the real cases there is an infinite cyclic group of
units in R, consisting of elements of norm 1.
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The other most interesting special case is that of the cyclotomic
field Kn = Q[ϵn], where ϵn = e2πi/n is a primitive nth root of 1 in C. I
will show next time that we have Rn = OKn = Z[ϵn] if n is prime; in
fact this holds for all n. What makes this case so interesting is its
connection to the famous Fermat equation xn + yn = zn, where
x , y , z are nonzero integers (that we can assume to be relatively
prime) and n > 2. Fermat claimed to have proved that there are
no solutions to this equation. The proof quickly reduces to the
case where n = p is prime (since the case n = 4 is elementary).
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Passing to the ring of integers Rp, the left side of the equation
factors as (x + y)(x + ϵpy) . . . (x + ϵp−1

p y), where the relative
primeness of x and y forces the factors x + ϵi

py to be pairwise
relatively prime. From here one can (with some work) get a
contradiction if the class number of Rp is 1, so that unique
factorization of elements holds in Rp. (The key observation is that
then every factor x + ϵi

p must be a pth power, since their product
is the pth power zp.) Many leading mathematicians in the early
19th century took unique factorization for granted (or in one
case thought they had proved it), but in fact this fails for all
primes p ≥ 23.
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Kummer was able to prove Fermat’s conjecture under the
stronger hypothesis that p does not divide the class number of
Rp (the case of a so-called regular prime). Much later, in 1995,
Wiles and Taylor used much more complicated methods to
prove Fermat’s conjecture in general.
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