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As promised last time, I now give an account of the ring
analogues of number fields (finite extensions of Q). Such rings are
not necessarily PIDs, but both their structure and module theories
are very close to the corresponding theories for PIDs. Rather
than Dummit and Foote, I will be following the treatment in a pdf
“Number Fields” based on lectures at Cambridge; I will send an
electronic copy to all of you. All page references will be to this
pdf, except those labelled DF.
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Let K be a number field, that is, a finite extension of Q.

Definition 1.2, p. 2
The ring of integers of K , denoted OK , consists of the algebraic
integers in K (roots of monic polynomials with integer
coefficients).

We have already seen that OK is indeed a ring and that OQ = Z.
We have also seen that OK is integrally closed in the sense that
the only elements of K that are roots of monic polynomials with
coefficients in OK lie in OK , since such elements generate rings
that are finitely generated as Z-modules and so are algebraic
integers. Moreover, if α ∈ K , so that αn +

∑n−1
i=0 qiα

i = 0 for some
qi ∈ Q, then for any z ∈ Z we have (zα)n +

∑n−1
i=0 zn−iqi(zα)i = 0;

choosing z so as to clear all the denominators of the qi , we see
that zα ∈ OK for some nonzero z ∈ Z (Lemma 1.7, p. 3).
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Setting n = [K : Q], it follows from the above that there is a
Q-basis α1, . . . , αn of K with αi ∈ OK for all i. I will show below that
OK is a finitely generated Z-module; from the classification of
such modules, it follows that OK admits a free Z-basis that is also
a Q-basis of K . For the finite generation we need

Definition 2.3,p. 4
For α ∈ K the trace T (α) is the trace of multiplication mα by α,
regarded as a Q−linear transformation from K to itself. The norm
N(α) is the determinant of mα.
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Then we have

Corollary 2.6, p. 5
We have T (α)N, (α) ∈ Z if α ∈ OK .

Indeed, by Gauss’s Lemma, the minimal polynomial of α over Q,
which is the same as that of mα, lies in Z[x ]. By the rational
canonical form, the matrix of mα is similar to one with integer
entries, whence its trace and determinant lie in Z. Clearly
T (α+ β) = T (α) + T (β),N(αβ) = N(α)N(β).

Proposition 3.8, p. 7
OK is finitely generated over Z.
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Proof.
Let α1, . . . , αn be a basis of K with the αi ∈ OK . If α ∈ OK , then
T (ααi) ∈ Z for all i, since ααi ∈ OK . Now the map sending x , y ∈ K
to (x , y) = T (xy) is a nondegenerate bilinear form; that is, it is
Q-linear in each coordinate and the only y ∈ K with (x , y) = 0 is
x = 0 (in fact (y−1, y) = T (1) = n if y ̸= 0). In particular the map
m : K → Qn with m(y) = ((α1, y), . . . , (αn, y)) has trivial kernel and
range all of Qn, so that there is a “dual basis” β1, . . . , βn of K with
(αi , βj) = δij . But then the Z-submodule of K consisting of all β with
αiβ) ∈ Z for all i is free on the βi ; since this submodule contains
A = OK ,A is a submodule of a finitely generated Z-module and
so is finitely generated. (The same argument shows that any
ideal I of OK is free and finitely generated over Z.)
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Example
As a simple but surprisingly rich example, consider a quadratic
extension K = Q[

√
d], where d is a square-free integer (having

no nontrivial factor that is a square). The Galois group of K is
cyclic of order 2; its nontrivial element is the conjugation map
sending a + b

√
d to a − b

√
d. Let’s compute R = OK . To begin

with, clearly 1,
√

d ∈ R, whence a + b
√

d ∈ R if a,b ∈ Z. Next, if
x = a + b

√
d ∈ R, then T (x) = (a + b

√
d) + (a − b

√
d) = 2a ∈ Z,

so we must have a ∈ Z or a ∈ Z+ 1
2 . If a ∈ Z, x ∈ R, then

x − a = b
√

d ∈ R, whence N(b
√

d) = b2d ∈ Z,b ∈ Q. Since d is
square-free, this forces b ∈ Z. We are reduced to considering
elements x = a + b

√
d with a = m

2 ,b = n
2 and m,n odd, whence

m2 ≡ n2 ≡ 1 mod 4. Then N(x) = a2−db2

4 ∈ Z, forcing d ≡ 1
modulo 4. Conversely, if d ≡ 1 mod 4, then T (x) and N(x) are
both integral and x is a root of a monic quadratic polynomial
over Z. The upshot is that R = OK = Z[ω], where ω =

√
d if d ̸≡ 1

mod 4, while ω = 1+
√

d
2 if d ≡ 1 mod 4. See Proposition 2.7 on p. 5.
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Returning now to general rings OK , recall first that a proper ideal
I of an arbitrary commutative ring R is called prime if xy ∈ I if and
only if x ∈ I or y ∈ I, or equivalently the quotient ring R/I is an
integral domain (DF, p. 255). The ideal I is maximal if it is not
contained in any other proper ideal, or equivalently if and only if
R/I is a field (DF, p. 254). Thus all maximal ideals are prime. In the
case R = OK , any nonzero ideal I contains a nonzero element x ,
whence it also contains the nonzero integer n = N(x), since this is
up to sign the constant term of the characteristic polynomial of
multiplication mx by x , which lies in Z[x ]. Since R is finitely
generated over Z, it follows that both nR and I have finite index
in R, whence R/I is finite. We define the norm N(I) of I to be the
index [R : I] of I in R as an additive subgroup (Definition 3.14, p.
9).
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An elementary fact from commutative ring theory is that a finite
integral domain D is a field (DF, p, 228); this is clear, since if
a1, . . . ,an are the elements of D and b ∈ D,b ̸= 0, then the
products bai are distinct and one of them must equal 1. If
R = OK , then we know that any quotient R/I of R is finite. Thus if I
is prime and nonzero, then it is maximal.

We have the following

Definition, DF p. 764
A Dedekind domain is an integrally closed integral domain such
that every ideal is finitely generated and every nonzero prime
ideal is maximal.
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Proposition 14, DF p. 764
The ring of integers OK of a number field K is a Dedekind domain.

Proof.
Since OK is a subring of a field and so an integral domain, it only
remains to show that every ideal I of it is finitely generated; but
this is clear since in fact I is finitely generated as a Z-module (as
noted above).

I now turn to factorization of ideals in R = OK ; this turns out to be
substantially better behaved than factorization of elements in
this ring. In fact factorization of ideals in R is completely parallel
to factorization of elements in a PID, but without the
complication of multiplicative units.
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My goal is to show that any ideal in R is a product of prime
ideals. I first prove a weak version of this.

Lemma 4.4, p. 11
Any nonzero ideal of R contains a product of nonzero prime
ideals.

Suppose not and let I be a counterexample with N(I) minimal;
this is possible since N(I) takes values in the positive integers.
Then clearly I cannot be prime itself, nor can we have I = R,
since R contains maximal prime ideals. Choose a,b ∈ R,a,b /∈ I
with ab ∈ I. The ideals I + (a), I + (b), being strictly larger than I
and thus having smaller norm, must each contain a product of
prime ideals, whence (I + (a))(I + (b)) ⊂ I contains the product
of these products, another product of prime ideals. This is a
contradiction.
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Now we bring in elements in elements of the field K but not in OK .

Lemma 4.5, p. 11
Let I be a nonzero ideal of R. Then there is γ ∈ K , γ /∈ R, with
γI ⊂ R.
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Proof.
Choose a nonzero α ∈ I. The principal ideal (α) then contains a
product P1 . . .Pr of nonzero prime ideals Pi ; choose such a
product with r minimal. Enlarge I to a maximal ideal P, which is
prime. Then P contains the product P1 . . .Pr , whence P contains
one of the factors, say P1, whence P = P1. Then (α) does not
contain the shorter product P2 . . .Pr , whence there is
β ∈ P2 . . .Pr , β /∈ α. I claim that γ = β/α has the desired property.
Indeed, if γ ∈ R, then β = αγ ∈ (α), contradicting the choice of β,
so γ lies in K but not in R. On the other hand,
γI = β

α I ⊂ 1
αP2 . . .Pr I ⊂ 1

αP1 . . .Pr ⊂ R, as required.
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My aim is also to show that a suitable enlargement of the set of
nonzero ideals of R is a group under multiplication. I will continue
with this program next time.
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