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Let H = A ⋉ G be a semidirect product of finite groups with the
normal subgroup A ablelian. Toward the end of last time, I
showed that A-conjugacy classes of subgroups G′ of H mapping
isomorphically onto G by the projection π : H → G are
parametrized by the first cohomology group H1(G,A). Such
groups H are called (split) extensions of G by A. A natural
follow-up to this would be to look at extensions that are not
necessarily split, that is, groups E with A as a normal subgroup
such that E/A ∼= G but where E does not necessarily have a
subgroup isomorphic to G. This lecture is devoted to studying
such extensions.
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More formally, one has

Definition, p. 824
An extension of a group G by an abelian group A is a short
exact sequence 1 → A → E → G → 1 of groups such that A (or
rather its image in E is normal. Two extensions
1 → A → E → G → 1, 1 → A → E ′ → G → 1 are equivalent if there
is a group isomorphism β : E → E ′ such that the obvious diagram
with rows the short exact sequences and column maps given by
the identity, β, and the identity, commutes.

I emphasize that for two extensions with middle terms E, E ′ to be
equivalent it is not sufficient that E and E ′ be isomorphic. Last
quarter we looked at extensions 0 → L → M → N → 0 of modules
over a ring R; in this setting L is automatically a normal subgroup
of M as an abelian group. In that setting also for two extensions
with middle terms M,M′ to be equivalent it is not sufficient that M
and M′ be isomorphic.
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Given an extension of G by A with middle term E, for each g ∈ G
choose µ(g)∈E mapping onto g by the surjection E → G. Then
for g,h ∈ G the product µ(g)µ(h) = f (g,h)µ(g,h) for some
f :∈ C2(G,A). We call f a factor set (p. 825). Taking µ(1) = 1, we
can arrange that f (1,g) = f (g, 1) = 0, the identity element of A
(using additive notation); if this holds we say that the factor set f
is normalized. The associative law for the product µ(g)µ(h)µ(k)
then shows that

f (g,h) + f (gh, k) = g · f (h, k) + f (g,hk);

again in additive notation; this is sometimes called the factor set
condition. This is exactly the condition for f to be a 2-cocycle, by
the bar resoslution. If we make a different choice of µ, replacing
µ(g) by f1(g)µ(g) for some f1 ∈ C(G,A), then the factor set f gets
replaced by f ′, where f ′(g,h) = f (g,h) + g · f1(h)− f1(gh) + f1(g);
this is exactly the condition that f and f ′ differ by a
1-coboundary.
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Conversely, suppose we have a group G acting on an abelian
group A by automorphisms. Let f : G2 → A be a 2-cocycle.
Define a formal symbol µ(g) for g ∈ G, impose the relation
µ(g)µ(h) = f (g,h)µ(g,h) for g,h ∈ G and decree that µg act on
A by conjugation as g does. Then A and the µg generate a
group E and an extension 1 → A → E → G → 1; the map from E
to G has kernel A and sends each µ(g) to g.

Lecture 2-10 H2 and group extensions February 10, 2025 5 / 15



I deduce

Theorem 36, p. 828
There is a 1-1 correspondence between equivalence classes of
extensions of G by A and elements of H2(G,A). The zero element
of H2(G,A) corresponds to the class of split extensions.

Lecture 2-10 H2 and group extensions February 10, 2025 6 / 15



I showed last time that Hn(G,A) = 0 for all n ≥ 0 if A and G are
finite with relatively prime orders. Now I get (using the last result
last time)

Schur’s Theorem, p. 829
If a finite group E has an abelian normal subgroup A whose
index is relatively prime to its order, then E is the semidirect
product of A and a complementary subgroup G. Moreover any
two complements of A in E are conjugate under A.
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Returning to the two examples of Frobenius groups that I gave
last quarter, I note that the symmetric group S3 has the normal
abelian subgroup A3 whose order and index are relatively prime;
here the three subgroups generated by transpositions are
conjugate and complementary to A3. Similarly, the alternating
group A4 has the Klein 4-group K as a normal abelian subgroup,
whose index is relatively prime to its order. Here there are four
complements of K in A4, each generated by a 3-cycle. Note
that while it is not true that any two 3-cycles are conjugate in A4,
it is true that any two subgroups generated by 3-cycles are
conjugate; in fact such subgroups are exactly 3-Sylow subgroups
of A4.
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Once one knows Schur’s Theorem for abelian normal subgroups,
it turns out that purely group-theoretic arguments establish it for
general normal subgroups.

Schur’s Theorem in general, p. 829
If a finite group E has a normal subgroup whose order and index
are relatively prime, then E is the semidirect product of N and a
complementary subgroup G.
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Proof.
By induction on the order of E. Since we may assume that N ̸= 1,
let p be a prime dividing the order of N and let P be a p-Sylow
subgroup of N, with normalizer E0 in E. Set N0 = N ∩ E0. Since any
conjugate ePe−1 for e ∈ E is p-Sylow in N and thus conjugate in
N to P, we have E = E0N, whence N0 is normal in E0 and the
index [E0 : N0] = [E : N]. If E0 ̸= E, then by inductive hypothesis N0
has a complement H in E0, which is also a complement to N in E,
as desired. Hence we may assume that E0 = E, so that P is
normal in E. The center Z of P, like P itself, is then preserved by
conjugation in E, so is normal.
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Proof.
If Z = N then N is abelian and we are done by the previous
result. Otherwise we pass to the quotient group E = E/Z . The
image N of N in this group has index relatively prime to its order,
so it has a complement H in E. The preimage E1 of H in E then
has |E1| = |H||Z | = |E/N||Z |, so by induction has a complement H
in E1 which by its order is a complement of N in E, as desired.

Lecture 2-10 H2 and group extensions February 10, 2025 11 / 15



I do not know whether any two complements of N in E must be
conjugate by N in the general setting. Following the text (pp.
830-31), I now present the simplest example of a noncyclic
group not satisfying the hypothesis of Schur’s Theorem, so that its
cohomology (with suitable coefficients) is nonzero. Take G to be
Z2 × Z2, the Klein four-group, and write its elements as 1,a,b,c.
Take A to be the cyclic group of order 2, on which G
(necessarily) acts trivially. Here the order and index of A in an
extension of G by A are not relatively prime. The possibilities for a
group E admitting a normal (necessarily central) cyclic subgroup
A of order 2 such that E/A ∼= G are Z3

2, the quaternion group H,
the product Z4 × Z2, and the dihedral group D of order 8. There
is only one extension up to equivalence in the first and last cases,
since the automorphisms of E necessarily fix A and induce all
possible automorphisms of G.
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The other two cases offer more possibilities. If E is the product of
cyclic groups of orders 4 and 2, generated respectively by x and
y , then we may take A to be the subgroup generated by x2. An
automorphism of E must send x to one of x , x3, xy , and x3y , while
y goes to itself or to x2y . Modulo x2, then, y must go to itself and
there are just two choices for the image of x , so only two of the
six automorphisms of G arise from automorphisms of E and there
are three inequivalent extensions with this group E. Similarly,
taking E = D, generated by the cyclic subgroups ⟨r⟩, ⟨s⟩
generated by a rotation and reflection, respectively, then we
must take A = ⟨r2⟩. Automorphisms of E must send r to itself or its
inverse, so again the induced automorphisms of E/A send the
image of r to itself and offer just two choices for the image of s.
Again only two of the six automorphisms of G arise from
automorphisms of E and we get three inequivalent extensions for
this E.
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Thus there are eight inequivalent extensions of G by A
altogether. Since every element of H2(G,A) has order 2, we must
have H2(G,A) ∼= Z3

2 as an abelian group. Actually, there is more
structure present here, with which those of you with a
background in algebraic topology might be familiar. The direct
sum R = ⊕nHn(G,A) of all the cohomology groups attached to
G and A has a ring structure, given by something called the cup
product, and the ring R is then graded, since the product of
classes in Hn(G,A) and Hm(G,A) turns out to land in Hn+m(G,A),
From this point of view, the cohomology ring R′ = ⊕nHn(Z2,A)
turns out to be the polynomial ring Z2[x ].
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In general, given a direct product G1 × G2 of groups acting
trivially on a field k , something called the Künneth formula
asserts that the cohomology ring attached to (G1 × G2,A) is the
tensor product over k of the rings attached to (G1,A) and
(G2,A). In the present case, with k = Z2, taking the tensor
product of the polynomial rings Z2[x ] and Z2[y ], we get the
polynomial Z2[x , y ] in two variables, graded by total degree. The
2-graded piece is spanned by x2, xy , and y2: these monomials
form a basis of the three-dimensional space H2(G,Z2) over Z2.
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