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There are three classical construction problems, dating back to
the ancient Greeks, which ask whether if it possible to carry out
certain geometric constructions using only a compass and an
unmarked straightedge. More precisely, they ask whether it is
possible with these tools to duplicate the cube, that is, to
construct a cube whose volume is exactly twice that of a given
cube; to trisect the angle, that is, to construct an angle of θ
radians given one of 3θ radians; and to square the circle, that is,
to construct a square whose area is the same as that of a given
circle.
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The answer to all of these questions is no, but one must be
careful to understand what this answer means in each case. In
the first case, we choose a unit of length and are given two
points this distance apart; in the second case, parametrizing
angles by their cosines, we are given two points exactly cos 3θ
apart, and in the third case we are again given two points at
unit distance. In the first case, we must construct two other
points at distance 21/3; in the second, we must construct two
points at distance cos θ; and in the third we must construct tow
points at distance

√
π. In the second case, I need to specify

more precisely what θ is. There are many angles θ that can be
constructed directly, without the use of any auxiliary angles (for
example θ = π/2); there are other angles θ such that one cannot
construct an angle of θ radians from scratch, but one can
construct such an angle if one of 3θ radians is given. I will show
however that one can construct an angle of π/3 radians (this is
easy) but not one of π/9 radians.
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In each case the tools allow me only to construct the line
through two given points, or the circle with a given center
passing through a given point, or the intersection(s) of two such
lines or circles. The well-known equations of lines and circles in
the Cartesian plane show that the only possible distances
between pairs of points constructed in this way are those lying in
fields constructed from the rational field Q by a sequence of
iterated quadratic extensions, that is, lying in a field Qn ⊂ R such
that there are fields Q0 = Q,Q1, . . . ,Qn such that each Qi is a
quadratic extension of Qi−1. Conversely, there are elementary
constructions showing that one can construct two points at
distance α if α is real, nonnegative, and lies in such a field Qn.
See pp. 532-3 in the text.
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In particular, since it was observed last time that since the
degree 3 of 21/3 is not a power of 2, this number cannot lie in any
such field Qn, so that the cube cannot be duplicated. For
α = cosπ/9, the triple-angle formula from trigonometry shows
that 8α3 − 6α− 1 = 0, since cosπ/3 = 1/2; writing β = 2α, we get
that β3 − 3β − 1 = 0. The polynomial x3 − 3x − 1 is easily seen to
have no rational roots (such roots would have to be algebraic
integers and the only candidates are ±1, neither of which is a
root). Thus this polynomial has no linear factors in Q[x ], whence it
is irreducible and the degrees of α and β over Q are both 3. Thus
an angle of π/3 radians cannot be trisected. Finally, it is well
known that both π and

√
π are transcendental over Q (though I

will not stop to prove this here), so the degree of
√
π is infinite

and the circle cannot be squared (Theorem 24, p. 533).
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This is not the end of the story for geometric constructions, as
another classical Greek problem asks for which n a regular
n-gon can be constructed with straightedge and compass. I am
not quite ready to present the full solution to this problem; suffice
it to say for now that the answer is yes for n if and only if the
primitive nth root e2π/n can be constructed (that is, its real and
imaginary parts can be constructed). The degree of this
element turns out to be ϕ(n), the Euler phi function evaluated at
n, which counts the number of positive integers less than n and
relatively prime to it. If the prime factorization of n is pa1

1 . . .pam
m ,

then any such integer is completely determined by its remainder
modulo the prime powers pai

i for every i, which must be a
non-multiple of pi . Hence ϕ(n) = (pa1

1 − pa1−1
1 ) . . . (pam

m − pam−1
m ); it

is easy to check that this product is a power of 2 if and only if n is
a product of a power of 2 and distinct primes pi , each one more
than a power of 2.
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In turn a number 2m + 1 has a chance of being prime only if m is
a power of 2 (since otherwise 2m + 1 is a sum of odd powers,
which admits a standard factorization). Numbers of the form
22i

+ 1 are called Fermat numbers; it turns out that the first five of
these (for 0 ≤ i ≤ 4) are prime but there are no other known
primes of this form. Eventually I will show conversely that if n is the
product of a power of 2 and distinct Fermat primes then the
regular n-gon can indeed be constructed. For now I will digress
a bit to give the general definition of the cyclotomic polynomial
Φn, which you will need for the first HW. This is the unique monic
polynomial in C[x ] whose roots are the exactly the primitive nth
roots of 1 in C. Since every nth root of 1 in C is a primitive dth root
of 1 for some divisor d of n, we have the factorization
xn − 1 =

∏
d|n Φd(x); assuming inductively that Φd(x) actually lies

in Z[x ] for all d < n, it follows that Φn(x) ∈ Z[x ]. Thus the
coefficients of Φn are actually integers.
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For now I want to iterate the construction that starts with an
irreducible polynomial q of degree n over a field K and passes
to the larger field K1 = K [x ]/(q), in which this polynomial has a
root; this is sometimes called adjoining a root of q to K . Letting α
be the root of q in K1, write q(x) = (x − α)q2 for some q2 ∈ K1[x ]
and let p2 be an irreducible factor of q2. Then adjoin a root of p2
to K1, obtaining a larger field K2 in which q has at least two roots.
Iterating this process, we find after finitely many steps that there
is a field Km which is generated by roots of q over K and over
which q factors into linear factors. Such a field is called a
splitting field for q over K (Definition, p. 536). The construction
shows that the degree [Km : K ] ≤ n! (using the multiplicativity of
field degrees). More generally, by further iterating the
construction, one sees that any finite collection of nonconstant
(but possibly reducible) polynomials q1, . . . ,qm over a field K
admits a splitting field.
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As an example, the splitting field of the polynomial xn − 1 over Q
is easily seen to be the subfield Q[ζn] of C generated by Q and
ζn = e2πi/n, since all roots of this polynomial are powers of this
fixed one. This extension is called the nth cyclotomic extension or
the nth cyclotomic field (p. 540).

The central goal of Galois theory is to understand roots of
polynomials over fields by studying automorphisms of their
splitting fields. To that end I first determine when an isomorphism
from one field F to another one F ′ extends to an isomorphism
from a simple finite extension of F into an extension of F ′.

Lemma
Let ϕ : F → F ′ be an isomorphism from the field F into F ′. Let F(α)
be a simple algebraic extension of F such that α has minimal
polynomial p in F [x ] and let E ′ be an extension of F ′. Then ϕ
extends to an isomorphism from F(α) into E ′ if and only if the
polynomial ϕ(p) has a root in E ′.
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Proof.
We have F(α) ∼= F [x ]/(p). Given any homomorphism π from F into
a ring R and an element r ∈ R there is a unique homomorphism
from the polynomial ring F [x ] into R extending π and sending x to
r . Replacing F [x ] by the quotient F [x ]/(p) we see that ϕ extends
to F(α) if and only if ϕ(p) has a root in E ′, as claimed.

Uniqueness of splitting fields: Theorem 27, p. 541
Leet ϕ : F → F ′ be an isomorphism of fields and let f be a
nonconstant polynomial over F . Let E, E ′ be splitting fields of f
and ϕ(f ) over F and F ′, respectively. Then ϕ extends to an
isomorphism from E into E ′.
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Proof.
This follows by repeated applications of the lemma, at each step
defining ϕ on a new root of an irreducible factor p and locating
a root of ϕ(p) in E ′ among the roots of ϕ(f ) there.

As a corollary, any two splitting fields of a single polynomial p or
a finite collection of such over a field F are isomorphic and in
particular have the same degree over F (Corollary 28, p. 542),
since any nonzero homomorphism from one field to another
necessarily has kernel 0, so that the isomorphisms from one
splitting field to another are necessarily isomorphisms onto.
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By iterating the splitting field construction and using Zorn’s
Lemma, one can show that every field F admits an algebraic
closure, that is, an algebraic extension F such that every
nonconstant polynomial in F [x ] is the product of linear factors in
F [x ]. See Proposition 30 on p. 544; the technique used in the
proof will never appear again in the course, so I will omit the
proof in class. I note, however, that F is algebraically closed,
since given any nonconstant polynomial in F [x ], the field
generated by F and its coefficients is a finite extension F ′ of F .
The minimal polynomials of the elements in a basis of F ′ are
products of linear factors in F [x ], so there are no proper finite
extensions of F .
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I close by returning to finite fields. I have already shown that the
order q of any such field Fq must be a prime power pn and that
all elements of Fq are roots of the polynomial xq − x , so that we
can identify F with the splitting field of xq − x over the prime
subfield Fp = Zp, so that any two fields of order q are isomorphic,
as mentioned previously. What is not yet clear, however, is that
there is a field of order q for every prime power q; it is
conceivable that the splitting field of xq − x over Fp has order less
than q. I will rule this out next time. Note finally that if m divides n,
then all roots of xpm − x are also roots of xpn − x , so Fpm is a
subfield of Fpn , as mentioned last time.
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