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I begin the quarter by shifting gears, looking at extensions of
fields, that is, fields L containing a given subfield K . Last term I
looked briefly at rings B containing a subring A, defining the
notion of an element of B integral over A. This time I can use the
machinery of linear algebra to express the relationship between
K and L much more precisely than I could for A and B.
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Definition, p. 511
Given a field extension K ⊂ L, the degree of L over K , denoted
[L : K ], is the dimension of L as a vector space over K . If this is
finite, then we say that L is finite over K .

Assume first that L is generated over K as a field by a single
element y , so that every element of L takes the form p(y)

q(y) for
some p,q ∈ K [x ],q ̸= 0. Such an extension of K is called simple
(see p. 517). The simplest case occurs when q(y) ̸= 0 for any
q ̸= 0; in this case we say that y is transcendental over K . Clearly
[L : K ] is infinite in this case and every element of L takes the form
p(y)
q(y) for some nonzero q ∈ K [x ].
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If instead q(y) = 0 for some nonzero polynomial q, then the
unique monic q of least degree with this property is irreducible
over K . We say that y is algebraic over K in this situation; thus
y ∈ L is algebraic over K if and only if the field K (y) generated by
K and y is finite over K , or if and only if the ring K [y ] generated
by K and y is finite-dimensional over K . In particular, if y is
algebraic over K then so is every element of K (y). We say that L
is algebraic over K if every element of it is (even if the degree of
L over K is infinite). Recall also that if q is irreducible in K [x ], then
the quotient K [x ]/(q) is an extension field finite over K , of degree
equal to that of q. Finiteness of extensions is transitive in the
following fundamental sense.

Theorem 14, p. 523
If K ⊂ L ⊂ M are fields with L finite over K and M finite over L, then
M is finite over K and [M : K ] = [M : L][L : K ].
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Proof.
If [L : K ] and [M : L] are both finite, then let α1, . . . , αm be a basis
of L over K and β1, . . . , βn a basis of M over L. Then I claim that
the products αiβj form a basis of M over K , so that indeed
[M : K ] = nm = [M : L][L : K ]. Indeed, any m ∈ M is a combination∑

ℓjβj for some ℓj ∈ L; writing each ℓj as a combination
∑

kijαi
with kij ∈ K , we see that the αiβj span M over K . The proof of their
linear independence is similar.

As a corollary, if L is an extension of K and α, β ∈ L are algebraic
over K , then so are α± β, αβ, and α/β (Corollary 18, p. 527). In
particular, if L is algebraic over K and M is algebraic over L, then
M is algebraic over K (Theorem 20, p. 527. We saw earlier for that
if elements α, β of a ring B are integral over a smaller ring A, then
so are α± β and αβ, but in that setting α/β need not be integral
over A.
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Let K1,K2 be two extensions of a field K both contained in a
larger field L. The composite K1K2 of K1 and K2 is the subfield of L
generated by K1 and K2.

Proposition 21, p. 529
With notation as above, if the Ki are finite over K , then so is the
composite K1K2, and in fact [K1K2 : K ] ≤ [K1 : K ][K2 : K ].

Indeed, if α1, . . . , αn and β1, . . . , βm are respective basis of K1 and
K2 over K then the proof of Theorem 14 above shows that the
products αiβj span K1K2 over K (though they need not be
independent). If moreover n and m are relatively prime,
however, then the degree [K1K2 : K ], being a multiple of both n
and m by Theorem 14, must be exactly nm, so that in this case
the αiβj do form a basis of K1K2.
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We have seen that any finite simple extension L of K takes the
form K [x ]/(q) for some irreducible polynomial q ∈ K [x ]; but it is
emphatically not true for monic irreducible q1,q2 that the fields
K [x ]/(q1) and K [x ]/(q2) are isomorphic if and only if q1 = q2. For
example, the quadratic formula (which is valid over any field of
characteristic different from two) shows that given any
irreducible quadratic polynomial q = x2 + bx + c ∈ K [x ] and any
extension L of K in which β = b2 − 4c has a square root α, the
subfields K1 = K (α) and K2K (r) of L coincide for any root r of q.
Here K1

∼= K [x ]/(x2 − β),K2
∼= K [x ]/(q). In fact any quadratic

extension L (having degree two) of a field K with characteristic
different from 2 is generated by a single element α with α2 ∈ K .
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Thus given two elements α, β of a field L both algebraic over a
smaller field K , it is by no means obvious in general when the
subfields K (α),K (β) respectively generated by α, β over K
coincide; it is even more difficult to decide more generally
whether or not β ∈ K (α). Often one can rule this out by looking
at degrees.

Definition, p. 520
Given an extension L of a field K and α ∈ L the degree of α over
K is defined to be the degree [K (α) : K ] of the field extension
K (α) over K .

Clearly this is infinite if and only if α is transcendental over K and
coincides with the degree d of the minimal polynomial of α over
K otherwise.
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It follows at once from Theorem 14 that the degree of any α ∈ L
divides the degree [L : K ] of L over K . Thus for example we can
say immediately that α = 21/3, the (real) cube root of 2, does not
lie in any quadratic extension of the rational field Q, for the
polynomial x3 − 2 is easily seen to be irreducible over Q by
Eisenstein’s Criterion, whence the degree of α over Q is 3. It is
also true for example that

√
3 does not lie in the subfield Q(

√
2)

(say of C), but the proof is a little harder. By looking at degrees
we see that the only way this could hold is if Q(

√
3) = Q(

√
2); but

if
√

3 = a + b
√

2 with a,b ∈ Q, then by squaring both sides and
equating coefficients we would get in particular that ab = 0; but
there is no rational square root of 3 or 3/2, so this is a
contradiction.
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If p is a prime number, then the polynomial xp−1 + . . .+ x + 1 is
irreducible over Q (as one sees from Eisenstein’s Criterion by
changing the variable from x to x + 1), so that the complex pth
root of 1 e2πi/p ∈ C has degree p − 1 over Q. Now it turns out for
odd p that

√
p lies in the field Q(e2πi/p), but this is far from

obvious; on the other hand, it is not ruled out by degree
considerations, since 2 divides p − 1. In fact a famous result
called the Kronecker-Weber Theorem implies in particular that
for any r ∈ Q that the extension Q(

√
r) lies in Q(e2πi/n) for some n.
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I conclude with a brief look at finite fields (to which I will return
later). Clearly any such field F has prime characteristic p > 0; by
looking at the dimension of F over its prime subfield Fp = Zp, we
conclude that F has order a power pn of p. At this point, we
cannot quite say conversely for any prime power pn that there is
a field of order pn, but I will later show that this is indeed the case
(so that the hypothesis in a HW problem last quarter is always
satisfied). For now observe that if a field Fm of order pm lies in
another one Fn of order pn, then (again by looking at
dimensions) one deduces that m divides n (since pn must be a
power of pm). I will show conversely later that any field of order
pn indeed contains a subfield of order pm if m divides n.
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Note also that any field F = Fn of order pn is such that xpn−1 = 1
for all nonzero x ∈ F , since x lies in a finite group of order pn − 1.
The polynomial xpn − x then has every y ∈ F as a root. This gives
reason to believe that any two fields of order pn are isomorphic;
again we will show later that this is always the case.
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