Lecture 1-6: Field extensions

January 6, 2025

Lecture 1-6: Field extensions

January 6, 2025

ヘロト ヘ回ト ヘヨト ヘヨト

I/12

I begin the quarter by shifting gears, looking at extensions of fields, that is, fields *L* containing a given subfield *K*. Last term I looked briefly at rings *B* containing a subring *A*, defining the notion of an element of *B* integral over *A*. This time I can use the machinery of linear algebra to express the relationship between *K* and *L* much more precisely than I could for *A* and *B*.

Definition, p. 511

Given a field extension $K \subset L$, the *degree* of *L* over *K*, denoted [L : K], is the dimension of *L* as a vector space over *K*. If this is finite, then we say that *L* is finite over *K*.

Assume first that *L* is generated over *K* as a field by a single element *y*, so that every element of *L* takes the form $\frac{p(y)}{q(y)}$ for some $p, q \in K[x], q \neq 0$. Such an extension of *K* is called simple (see p. 517). The simplest case occurs when $q(y) \neq 0$ for any $q \neq 0$; in this case we say that *y* is transcendental over *K*. Clearly [*L* : *K*] is infinite in this case and every element of *L* takes the form $\frac{p(y)}{q(y)}$ for some nonzero $q \in K[x]$.

イロン イ理シ イヨン ・

If instead q(y) = 0 for some nonzero polynomial q, then the unique monic q of least degree with this property is irreducible over K. We say that y is algebraic over K in this situation; thus $y \in L$ is algebraic over K if and only if the field K(y) generated by K and y is finite over K, or if and only if the ring K[y] generated by K and y is finite-dimensional over K. In particular, if y is algebraic over K then so is every element of K(y). We say that L is algebraic over K if every element of it is (even if the degree of L over K is infinite). Recall also that if q is irreducible in K[x], then the quotient K[x]/(q) is an extension field finite over K, of degree equal to that of *a*. Finiteness of extensions is transitive in the following fundamental sense.

Theorem 14, p. 523

If $K \subset L \subset M$ are fields with L finite over K and M finite over L, then M is finite over K and [M : K] = [M : L][L : K].

ヘロン ヘアン ヘビン ヘビン

Proof.

If [L:K] and [M:L] are both finite, then let $\alpha_1, \ldots, \alpha_m$ be a basis of L over K and β_1, \ldots, β_n a basis of M over L. Then I claim that the products $\alpha_i\beta_j$ form a basis of M over K, so that indeed [M:K] = nm = [M:L][L:K]. Indeed, any $m \in M$ is a combination $\sum \ell_j\beta_j$ for some $\ell_j \in L$; writing each ℓ_j as a combination $\sum k_{ij}\alpha_i$ with $k_{ij} \in K$, we see that the $\alpha_i\beta_j$ span M over K. The proof of their linear independence is similar.

As a corollary, if *L* is an extension of *K* and $\alpha, \beta \in L$ are algebraic over *K*, then so are $\alpha \pm \beta, \alpha\beta$, and α/β (Corollary 18, p. 527). In particular, if *L* is algebraic over *K* and *M* is algebraic over *L*, then *M* is algebraic over *K* (Theorem 20, p. 527. We saw earlier for that if elements α, β of a ring *B* are *integral* over a smaller ring *A*, then so are $\alpha \pm \beta$ and $\alpha\beta$, but in that setting α/β need not be integral over *A*.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Let K_1, K_2 be two extensions of a field K both contained in a larger field L. The composite K_1K_2 of K_1 and K_2 is the subfield of L generated by K_1 and K_2 .

Proposition 21, p. 529

With notation as above, if the K_i are finite over K, then so is the composite K_1K_2 , and in fact $[K_1K_2 : K] \le [K_1 : K][K_2 : K]$.

Indeed, if $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_m are respective basis of K_1 and K_2 over K then the proof of Theorem 14 above shows that the products $\alpha_i\beta_j$ span K_1K_2 over K (though they need not be independent). If moreover n and m are relatively prime, however, then the degree $[K_1K_2 : K]$, being a multiple of both n and m by Theorem 14, must be exactly nm, so that in this case the $\alpha_i\beta_j$ do form a basis of K_1K_2 .

イロン イロン イヨン イヨン 三日

We have seen that any finite simple extension L of K takes the form K[x]/(q) for some irreducible polynomial $q \in K[x]$; but it is emphatically *not* true for monic irreducible q_1, q_2 that the fields $K[x]/(q_1)$ and $K[x]/(q_2)$ are isomorphic if and only if $q_1 = q_2$. For example, the quadratic formula (which is valid over any field of characteristic different from two) shows that given any irreducible quadratic polynomial $q = x^2 + bx + c \in K[x]$ and any extension L of K in which $\beta = b^2 - 4c$ has a square root α , the subfields $K_1 = K(\alpha)$ and $K_2K(r)$ of L coincide for any root r of q. Here $K_1 \cong K[x]/(x^2 - \beta), K_2 \cong K[x]/(q)$. In fact any quadratic extension L (having degree two) of a field K with characteristic different from 2 is generated by a single element α with $\alpha^2 \in K$.

Thus given two elements α , β of a field L both algebraic over a smaller field K, it is by no means obvious in general when the subfields $K(\alpha)$, $K(\beta)$ respectively generated by α , β over K coincide; it is even more difficult to decide more generally whether or not $\beta \in K(\alpha)$. Often one can rule this out by looking at degrees.

Definition, p. 520

Given an extension *L* of a field *K* and $\alpha \in L$ the degree of α over *K* is defined to be the degree $[K(\alpha) : K]$ of the field extension $K(\alpha)$ over *K*.

Clearly this is infinite if and only if α is transcendental over K and coincides with the degree d of the minimal polynomial of α over K otherwise.

ヘロン 人間 とくほ とくほ とう

It follows at once from Theorem 14 that the degree of any $\alpha \in L$ divides the degree [L: K] of L over K. Thus for example we can say immediately that $\alpha = 2^{1/3}$, the (real) cube root of 2, does not lie in any quadratic extension of the rational field \mathbb{O} , for the polynomial $x^3 - 2$ is easily seen to be irreducible over \mathbb{O} by Eisenstein's Criterion, whence the degree of α over \mathbb{O} is 3. It is also true for example that $\sqrt{3}$ does not lie in the subfield $\mathbb{Q}(\sqrt{2})$ (say of \mathbb{C}), but the proof is a little harder. By looking at degrees we see that the only way this could hold is if $\mathbb{Q}(\sqrt{3}) = \mathbb{Q}(\sqrt{2})$; but if $\sqrt{3} = a + b\sqrt{2}$ with $a, b \in \mathbb{Q}$, then by squaring both sides and equating coefficients we would get in particular that ab = 0; but there is no rational square root of 3 or 3/2, so this is a contradiction.

If p is a prime number, then the polynomial $x^{p-1} + \ldots + x + 1$ is irreducible over \mathbb{Q} (as one sees from Eisenstein's Criterion by changing the variable from x to x + 1), so that the complex pth root of $1 e^{2\pi i/p} \in \mathbb{C}$ has degree p - 1 over \mathbb{Q} . Now it turns out for odd p that \sqrt{p} lies in the field $\mathbb{Q}(e^{2\pi i/p})$, but this is far from obvious; on the other hand, it is not ruled out by degree considerations, since 2 divides p - 1. In fact a famous result called the Kronecker-Weber Theorem implies in particular that for any $r \in \mathbb{Q}$ that the extension $\mathbb{Q}(\sqrt{r})$ lies in $\mathbb{Q}(e^{2\pi i/n})$ for some n.

・ロ・ ・ 日・ ・ ヨ・

I conclude with a brief look at finite fields (to which I will return later). Clearly any such field F has prime characteristic p > 0; by looking at the dimension of F over its prime subfield $F_{D} = \mathbb{Z}_{D}$, we conclude that F has order a power p^n of p. At this point, we cannot quite say conversely for any prime power p^n that there is a field of order p^n , but I will later show that this is indeed the case (so that the hypothesis in a HW problem last guarter is always satisfied). For now observe that if a field F_m of order p^m lies in another one F_n of order p^n , then (again by looking at dimensions) one deduces that m divides n (since p^n must be a power of p^{m}). I will show conversely later that any field of order p_n indeed contains a subfield of order p^m if m divides n.

Note also that any field $F = F_n$ of order p^n is such that $x^{p^n-1} = 1$ for all nonzero $x \in F$, since x lies in a finite group of order $p^n - 1$. The polynomial $x^{p^n} - x$ then has every $y \in F$ as a root. This gives reason to believe that any two fields of order p^n are isomorphic; again we will show later that this is always the case.