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By now you have seen quite a bit of material on finite Galois
extensions. The time has come to explore what happens when
one moves beyond that setting. I will consider first simple
transcendental extensions and then inseparable ones.
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Suppose first that L = K (t)the field of rational functions in one
variable t over a field K . The first order of business is to determine
that group of automorphisms of L fixing K . Of course any such
automorphism ϕ is determined by the image ϕ(t) of the variable
t . It turns out that the possible images are the fractions at+b

ct+d ,
where a,b,c,d ∈ K are such that ad − bc ̸= 0 (so that at+b

ct+d is
not a constant). The maps ma,b,c,d sending t to at+b

ct+d are called
linear fractional transformations; they play a prominent role in a
first course in complex analysis when K = C and the maps are
regarded as functions from C to itself. Note that the map ma,b,c,d
coincides with mka,kb,kc,kd for any nonzero k ∈ K ; apart from this
case distinct choices of a,b,c,d lead to distinct maps ma,b,c,d .
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If we label the map Ma,b,c,d by the matrix M =

(
a b
c d

)
, then a

simple calculation shows that the composite m ◦ m′ of the maps
m,m′ with respective matrices M,M′ is another linear fractional
transformation with the matrix MM′. The upshot is that the Galois
group G of K -automorphisms of L is isomorphic to PGL2(K ), the
quotient of the group GL2(K ) of 2 × 2 invertible matrices over K
by the normal subgroup of nonzero scalar matrices.

Lecture 1-29: Transcendental and inseparable extensionsJanuary 29, 2025 4 / 1



Armed with this calculation we can now ask whether there is a
bijection between subgroups of G and fields between K and L,
as there is in the case of a finite extension. The answer is very
quickly seen to be no; for example, if K is finite, then so is
PGL(2,K ) is also finite, but the degree [L : K ] is still infinite, so there
is already a mismatch between [L : K ] and the order of G. The
fixed field LG is not K but a much larger field of which L is a finite
extension. Thus we might want to restrict to the case where K is
infinite, but here again we run into trouble. The subgroup U of
linear fractional transformations of the form t → t + k for k ∈ K

corresponds to the image of the subgroup {
(

1 k
0 1

)
: k ∈ K} of

GL(2,K ) in G, which has infinite order and index in G, but there
are no nonconstant rational functions f such that f (t) = f (t + k)
for all k ∈ K , so that the fixed field LU collapses to the basefield K ,
even though U ̸= G.
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The reason for the mismatch becomes apparent when we look
at the field side of the picture. Every nonconstant element of L is
transcendental over K , so there is no field strictly between K and
L that is finite over K . In fact it turns out by a famous result called
Lüroth’s Theorem that every field strictly between K and L takes
the form K (u), the rational function field generated by u, for
some u ∈ L. Moreover, if we write u = p/q in lowest terms for p,q
in the polynomial ring K [t ], then a simple calculation using
Gauss’s Lemma shows that L is finite over K (u) and [L : K (u)] is the
larger of the degrees of p and q. (In particular, this is why maps
sending t to p

q are not automorphisms of L if p and q are not
both linear.) Thus we get a large number of finite extensions
L/K (u), to which Galois theory can be applied.
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Whenever L is Galois over a subfield K (u) there is a finite
subgroup F of PGL2(K ) such that K (u) = LF . Unfortunately, very
few finite groups F arise in this way! Last term, I showed that all
finite subgroups of the orthogonal group SO(3,R) are either
cyclic, dihedral, or isomorphic to one of the groups A4, S4, or A5.
The same list accounts for all the finite subgroups of PGL2(C)).
Thus, at least in the case K = C, there are very few subfields K (u)
such that L is Galois over K (u). For K = R things are even worse,
as only cyclic and dihedral groups can occur. Also in general L
need not even be separable over K (u), as I will show below.

Lecture 1-29: Transcendental and inseparable extensionsJanuary 29, 2025 7 / 1



It turns out the subgroups of a different Galois group (not that of
f over K , but rather that of f (x)− t over K (t)) account for all the
fields between K (f (t)) and K (t), for f ∈ K [t ]. Rather than pursue
this any further, however, I make some general remarks about
field extensions. Given an extension L of K , there will always be a
maximal subset S of L consisting of elements algebraically
independent over K , generating a subfield K ′ of L that is said to
be purely transcendental over K ; the subset S is called a
transcendence base of L over K . Then L is algebraic over K ′. A
simple argument along the lines of the proof that any two bases
of a vector space have the same cardinality shows that any two
transcendence bases of L over K also have the same cardinality,
called the transcendence degree of L over K (see p. 645).
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I now turn to the other big skeleton in the closet of Galois theory,
namely inseparable extensions. We already know that it takes
some work even to construct an example of an inseparable
extension, since even in characteristic p > 0, any finite field is
Galois over any subfield of itself.
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The simplest example of an inseparable extension starts with the
subfield K (tp) of the rational function field K ′ = K (t), where this
time the field K has characteristic p. The field L = k(t) is then
inseparable over K ′; as the only root of xp − tp in L′ is x = t , the
automorphism group of L over K ′ is trivial. Nevertheless, the
extension L′ is not too badly behaved over K ′; the multiplicativity
of field degrees shows that the only fields between K ′ and L are
K ′ and L themselves (since every such field has degree 1 or p
over K ′).
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One runs into trouble, however, as soon as one introduces a
second variable. The extension L = K (t ,u) of the rational
function field K ′ = K (tp,up) in two variables has degree p2 over
K ′ and trivial automorphism group, but now there are many
fields between K ′ and L. Moreover, L is not a simple extension of
K ′, since an easy calculation shows that qp ∈ K ′ for any q ∈ L, so
that all simple nontrivial extensions of K ′ inside L have degree p
over K ′.
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An extension L of a field K in characteristic p such that every
x ∈ L has xpk ∈ K for some nonnegative integer k is called purely
inseparable (p. 649) The automorphism group Aut (L/K ) is always
trivial in this case. In general, if x ∈ L is not separable over K , then
some power xpk

of L is separable. Iterating this, one deduces
that any algebraic extension L of a field K in characteristic p is a
separable extension of an intermediate field K ′ purely
inseparable over K (possibly K itself). The degree of L over this
subfield K ′ is called the separable degree of L over K . Given
three fields K , L,M with K ⊂ L ⊂ M, the separable degree of M
over K is the product of the separable degrees of M over L and
of L over K .
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