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There is a beautiful connection between a Galois extension L of
a field K and the group algebra KG of its Galois group G. This is
established by

Normal Basis Theorem
If L is finite Galois over K with Galois group G and if g1, . . . ,gn are
the elements of G then there is x ∈ L such that g1x , . . . ,gnx is a
basis of L over K .

Such a basis is called a normal basis. Its existence shows that
L ∼= KG as representaitons of G over K (but not as algebras).
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To prove this result I need another one of interest in its own right.

Theorem: algebraic independence of automorphisms
With notation as above, if K is infinite, then the automorphisms gi
are algebraically independent; that is, the only polynomial
f ∈ K [x1, . . . , xn] with p(g1, . . . ,gn) = 0 as a map from L to itself is
the zero polynomial.
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Proof.
Let f satisfy f (g1, . . . ,gn) = 0 and let u1, . . . ,un be a basis of L over
K . For any ai ∈ K we have
f (g1(

∑
aiui , ) . . . ,gn(

∑
aiui)) = f (

∑
aig1(ui), . . .

∑
aign(ui)) = 0.

Setting g(x1, . . . xn) = f (
∑

g1(ui)xi , . . .
∑

gn(ui)xi) = 0, we get
g(a1, . . . ,an) = 0 for all ai ∈ K . Since K is infinite it follows that g is
identically 0 when regarded as a polynomial in the xi over K .
Define an n× n matrix M = (mij) over L via mij = gj(ui). Linear
independence of homomorphisms into a field (proved last time)
implies that the columns of M are linearly independent over L,
whence M has an inverse R = (rij). Then
g(
∑

j,k r1jgj(uk)xk , . . . ,
∑

j,k rnjgn(uk)) = f (x1, . . . , xn) = 0 identically,
as claimed.
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Now we can prove the Normal Basis Theorem. Suppose first that
K is infinite. Regarding the gi as independent variables over K
and defining a matrix N = (nij) over K [g1, . . . ,gn] via nij = gigj , we
find that the coefficient of gn

1 in det N is ±1 6= 0, so det N is not
identically 0. By the algebraic independence result, there is x ∈ L
such that det N(x) 6= 0. But then a dependence relation among
g1g1x , . . . ,g1gnx over K would also hold with the same
coefficients among gig1x , . . . ,gignx for all i, since the gi
commute with left multiplication by K , and the columns of N(x)
would be dependent over K , forcing det N(x) = 0. This is a
contradiction.
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Finally, suppose that K is finite. In this case G must be cyclic, say
generated by g. The minimal polynomial of g, regarded as
K -linear transformation from L to itself, must be xn − 1, since the
powers 1,g, . . . ,gn−1 are linearly independent automorphisms.
Using the elementary divisor version of the rational canonical
form, we find that the rational canonical form of g is the
companion matrix of xn − 1, so that there is x ∈ L such that
x ,gx , . . . ,gn−1x form a basis of L over K . This is exactly what we
want.
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In particular, the Normal Basis Theorem applies to any field L
admitting a finite group G of automorphisms; it says that there is
always x ∈ L such that the G-conjugates gx of x are distinct and
form a basis of L over the fixed field LG. You have already seen
one of the most interesting and important special cases, namely
that of the symmetric group Sn acting on the rational function
field L = K (x1, . . . , xn) in n variables xi over a field K , by permuting
the variables. Recall the elementary symmetric functions
si =

∑
j1,...,ji

xj1 · · · xji ; here the indices jk range over all distinct sets of i

indices among {1, . . . ,n} and 1 ≤ i ≤ n. I showed previously that
the si generate the fixed field LSn over K ; now I can sharpen this
result. To do this observe first that G = Sn also acts on the
polynomial ring S = K [x1, . . . , xn]. Polynomials fixed by Sn are
called symmetric.
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Fundamental Theorem on Symmetric Functions

The ring SG of symmetric polynomials is freely generated by the
si , so that every symmetric polynomial is uniquely a polynomial in
the si . In particular, SG is also a polynomial ring in n generators
over K .
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Proof.
First note that p ∈ S lies in SG if and only if whenever a monomial
term cxa1

1 · · · x
an
n occurs in the p, then so does cx

aπ(1)

1 · · · xaπ(n)
n , for

all permutations π ∈ Sn. Since p lies in S if and only if the sum of
the monomials of p of each fixed degree d does, we may
assume that p is homogeneous of degree d. As we did last
quarter, order all monomials in the xi of degree d
lexicographically, so that cxb1

1 · · · x
bn
n < dxc1

1 · · · x
cn
n if and only if

the smallest index i with bi 6= ci has bi > ci . Now, given a
homogeneous symmetric polynomial s, let xa1

1 · · · x
an
n be the

lexicographically first monomial m occurring in s. Then
a1 ≥ · · · ≥ an, lest some Sn-conjugate of this monomial be a
lexicographically earlier term in s.
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Proof.

Then one checks immediately that s − csan
n san−1−an

n−1 · · · sa1−a2
1 is

symmetric and a combination of monomials of degree d
lexicographically later than m, so by iterating this process we
write s as a combination of monomials in the si , as claimed. A
similar argument shows that the monomials in the si are linearly
independent: the lexicographically earliest monomial occurring
in any combination C of such monomials comes from just one of
them and is not cancelled out by any other one, so that
C 6= 0.
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I can form the quotient C = S/S+, where S+ is the ideal of S
generated by the homogeneous elements of SG of positive
degree. This quotient C is called the coinvariant algebra. Then
G acts naturally on C; it turns out that if homogeneous
polynomials p1, . . . ,pm are chosen so that their images in C form
a basis of it over K , then the pi provide both a free basis of S as
an SG module and a basis of L over LG.

Lecture 1-27: The Normal Basis Theorem January 27, 2025 11 / 1



The Normal Basis Theorem then implies that C is isomorphic as a
KG-module (but not as a ring) to KG itself. This alternative model
of the regular representation of G is more revealing in a number
of ways than KG itself, since it has a graded structure not present
in KG.
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For example, the 1-graded piece C1 of C may be identified with
the span over K of the variables xi , modulo the line spanned by
the sum s1 = x1 + . . .+ xn. G acts irreducibly on C1 via the
representation corresponding to the partition (n− 1, 1) (using the
parametrization of G-modules given last quarter). This is called
the reflection representation.
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The 0-graded piece C0 is just the basefield K , carrying the trivial
representation of G. It turns out that the

(n
2

)
-graded piece C(n

2)
of C is also one-dimensional, carrying the sign representation. In
general, there is a beautiful way to read off in which degrees of
C the dimπ copies of every irreducible representation π of G
live, using the standard tableaux from last quarter that
parametrize a basis of π.
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