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You have seen that every finite extension of a finite field is Galois
with cyclic Galois group, generated by a power of the Frobenius
automorphism send x to xp (where p is the characteristic of the
field). This very simple behavior can be exploited to produce
explicit permutations in the Galois group of a polynomial over Q.
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Before stating the main result, I need an auxiliary one, of interest
in its own right. This will be used later to prove something called
the Normal Basis Theorem.

Corollary 8, p. 570
If σ1, . . . , σn are distinct multiplicative homomorphisms of an
integral domain D into a field K , then they are linearly
independent over K as functions on D.
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Proof.

Suppose we had a dependence relation
m∑

i=1
kiσi(x) = 0 with the

ki in K . Of all such relations, choose one with the minimum
number m of nonzero terms; then clearly m > 1. Since σ1 6= σ2,
there is d ∈ D with σ1(d) 6= σ2(d). Replacing x by dx , we get
m∑

i=1
kiσi(d)σi(x) = 0. Subtracting a suitable multiple of the first

equation from this one, we get another nontrivial dependence
relation with fewer terms, a contradiction.
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The main result on permutations in the Galois groups is then

Theorem, p. 640
Let f ∈ Z[x ] be monic of degree n and let p be a prime such that
the reduction fp of f modulo p has no multiple roots. Suppose
that fp is the product of irreducible polynomials of degrees
n1, . . . ,nr in Zp[x ], so that

∑
ni = n. Then the Galois group G of f

has a permutation of the roots that is the product of disjoint
cycles of lengths n1, . . . ,nr .
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Before proving this result, I give an example showing how it can
be used. Since finite fields of all prime powers pn exist and are
simple extensions of Zp, it follows for any n that there are monic
irreducible polynomials pn ∈ Zp[x ] of degree n. Given n, choose
q2 ∈ Z2[x ] monic irreducible of degree n,q3 ∈ Z3[x ] monic
irreducible of degree n− 1, and qp ∈ Zp[x ] monic irreducible of
degree 2, where p is a prime larger than n− 2.. By the Chinese
Remainder Theorem, there is a monic f ∈ Z[x ] of degree n whose
reductions mod 2, 3, and p are q2, xq3, and
x(x + 1) . . . (x + n− 3)qp, respectively. Then f is irreducible in Z[x ]
with separable reductions mod 2, 3, and p, and the Galois group
of f over Q contains an n-cycle, an (n− 1)-cycle, and a 2-cycle.
It is an easy exercise to show that the only transitive subgroup of
Sn with these properties is Sn itself. Hence for every n there is a
polynomial of degree n whose Galois group over Q is Sn (we saw
this earlier if n is prime).
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Proof.
Let D be the subring of the splitting field E of f over Q generated
by the roots ri of f . I first claim that there are homomorphisms ψ
of D into the splitting field Ep of fp over Zp. To prove this, note first
that since the ri are integral over Z, the subring D is a finitely
generated Z-submodule, which is torsion-free and therefore
free. A Z-basis of D then spans a subring containing the ri over Q,
which must be all of E, by an easy argument (the rank of D over
Z coincides with the dimension N of E over Q). Now consider pD:
this is an ideal of D and |D/pD| = pN . Enlarge pD to a maximal
ideal M of D.
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Proof.
Then the quotient K = D/M is a field, necessarily of characteristic
p since M ⊃ pD; we have |K | = pm for some m ≤ N. The images
of r i of the ri in K generate it over its prime subfield Zp and the
product of the factors x − r i is the reduction fp of f , so K is a
splitting field of fp over Zp, necessarily isomorphic to Ep.
Combining the canonical map from D onto K = D/M with the
isomorphism from K to Ep, we get a homomorphism from D to Ep,
as claimed. Any such homomorphism necessarily maps the set
of roots ri of f bijectively onto the corresponding set of roots r i of
fp. Now for any g ∈ G and homomorphism ψ : D → Ep, the
composite ψg is another homomorphism from D to Ep, distinct
from ψ if g 6= 1 since g permutes the ri nontrivially. In this way we
get N = |G| distinct homomorphisms from D to Ep.

Lecture 1-24: Galois groups over Q January 24, 2025 8 / 1



Proof.
But now Corollary 8 tells us that these N homomorphisms are
linearly independent over Ep; by counting dimensions we see
that they must form a maximal Ep-linearly independent set of
such homomorphisms (since D is free of rank N over Z). Thus if ψ is
one homomorphism from D to Ep then the composites ψg
exhaust all the homomorphisms from D to Ep. The Frobenius map
φ sending x ∈ Ep to xp acts on the r i as the product of disjoint
cycles of lengths n1, . . . ,nr and the composite φψ is a
homomorphism from D into Ep. Writing the homomorphism φψ as
ψg for some g ∈ G, we see that g likewise permutes the ri as the
product of disjoint cycles of these lengths, as claimed.
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Thus the symmetric group Sn is a Galois group over Q for every n.
A famous problem called the Inverse Galois problem asks which
other finite groups H are Galois groups over Q. The answer to this
is still unknown, though it is widely believed that any finite group
H has this property. (Note that the Galois correspondence shows
that any subgroup of some Sn is a Galois group over some finite
extension of Q, but not over Q itself.) A theorem of Hilbert proved
in the nineteenth century shows that any alternating group An is
also a Galois group over Q; more recently, a deep result of
Shafarevich shows that any finite solvable group is a Galois
group over Q. Roughly speaking, this last result says that even
when it is possible to solve a polynomial in Q[x ] by radicals, it can
be arbitrarily hard to do so.

Lecture 1-24: Galois groups over Q January 24, 2025 10 / 1



There is a simple solution to the inverse Galois problem for any
finite abelian group A. This is because an easy consequence of
a homework problem in the first week, together with the
classification of finite abelian groups, shows that any such group
A is a homomorphic image of the multiplicative group Z∗

n of units
in Zn for some n; recall that this is the Galois group of the
cyclotomic extension Qn = Q[e2πi/n] of Q. By the Galois
correspondence, then, A is the Galois group of a suitable
extension of Q lying in Qn, and in fact the Galois group of any
normal extension lying in Qn is a quotient of Z∗

n and so is abelian.
A remarkable theorem due to Kronecker and Weber asserts that,
conversely, any abelian extension of Q, that is, any normal
extension with abelian Galois group, lies in Qn for some n.
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This last result is especially surprising since many abelian
extensions of Q (e.g Q[

√
78] seem to have nothing to do with

cyclotomic fields. An advanced branch of number theory
called class field theory seeks among other things to
characterize the abelian extensions of fixed finite extensions E of
Q. This is tricky even for cyclic extensions, since cyclic extensions
of order m of a field without a full complement of mth roots of 1
need not look anything like mth root extensions.
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There is a field related to Q for which the inverse Galois problem
is known to have a positive answer for all finite groups G. This is
the field R = C(z) of rational functions in one variable over C;
note that even though C itself does not admit any proper finite
extensions, by the Fundamental Theorem of Algebra, the field R
certainly does. What makes it more tractable than Q for the
inverse Galois problem is its deep connection to topology, more
specifically to the Riemann sphere.
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This sphere, often denoted CP1, is obtained from C by adding a
single point called∞ and putting a topology on it by declaring
that the open neighborhoods of∞ are the unions of∞ and the
open subsets of C containing all numbers of norm greater than
N for some N > 0. It is a compact space that is simply
connected as it stands, but by removing n points from it we get
another space with a very large fundamental group, namely the
free group Fn on n generators. Thus there is a very large
collection of covering spaces of this last space; by exploiting
these covering spaces, we (indirectly) get a finite extension of
C(z) with an arbitrary finite group as Galois group.
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