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I showed last time that there is no formula in terms of radicals for
the roots of the very simple polynomial x5 − 6x + 3 over Q; in stark
contrast, there are universal formulas for the roots of any cubic or
quartic polynomial over any field of characteristic not 2 or 3.
Today I will show first that this must be the case on general
principles and then develop the formulas.
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Definition, p. 607
The general polynomial of degree n over a field F is the
polynomial pn = (x − x1) · · · (x − xn); its coefficients lie in the
rational function field Fn = F(x1, . . . , xn).

Multiplying out the terms, we see that

pn = xn +
n∑

i=0
(−1)isi(x1, . . . , xn)xn−i , where si is the ith elementary

symmetric function of the xj , that is, the sum of all products of i
distinct xj (p. 607). We take s0 to be the constant function 1. We
should therefore regard the basefield of pn as the subfield
F ′n = F(s1, . . . , sn) of Fn generated by the si over F . The field Fn is
clearly the splitting field of pn over F ′n.
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Then we have

Theorem 32, p. 609
The extension Fn is Galois over F ′n with Galois group Sn, so that it is
solvable by radicals if and only if n ≤ 4.

Indeed, as mentioned above, Fn is the splitting field of the
separable polynomial pn over F ′n, so is Galois over the latter. The
Galois grou permutes the roots of pn, so is a subgroup of Sn; but
conversely any permutation of the xi fixes pn and all of its
coefficients. so the Galois group is all of Sn. The second assertion
follows from the Galois criterion, the deifnitio of solvability, and
the fact from last quarter that A5 is not solvable. As a
consequence, the field F ′ of functions in K fixed by the action of
Sn coincides with F ′n, so that every rational function of the xi
invariant under Sn is a rational function of the si . In fact, every
polynomial in the xi invariant under Sn is a polynomial in the xi .
Such rational functions or polynomials are called symmetric.
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To solve general cubic and quartic polynomials by radicals,
then, it would suffice to solve p3 and p4 by radicals and then
plug in the coefficients of an arbitrary cubic or quartic
polynomial (up to sign) for the variables xi in the formulas for the
roots. This is in effect what is done in Chapter 14 of the text; but I
prefer to solve these polynomials directly (as was done long
before Galois). Given a cubic equation x3 + ax2 + bx + c = 0
over a field of characteristic not 2 or 3, first substitute x = y − a

3 ,
rewriting the polynomial in terms of y . The coefficient of y2 drops
out, replacing the original equation by the reduced cubic
y3 + py + q = 0 for some p,q. Next, make the change of
variable y = z + k

z , where k is a constant to be specified in a
moment. The equation becomes
z3 +(3k +p)z +(3k2 +pk)z−1 +k−3z−3 +q = 0. Two terms drop out
by the choice k = −p/3, making the equation z3 + q − p3

27 z−3 = 0.
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This last equation becomes quadratic in z3 when multiplied by
z3. Applying the quadratic formula and simplifying, we get

Cardano’s formula: y = (−q
2 +

√
q2

4 + p3

27 )
1/3 + (−q

2 −
√

q2

4 + p3

27 )
1/3

(p. 632). Here the cube roots must be chosen so that their
product is −p

3 , so that we get only three roots by this formula. A
remarkable feature of the formula is that even if all the roots are
real, it often happens that this expression (or any other) for them
involves complex numbers. Here radical extensions do not
produce the splitting field, but rather a proper extension of it.
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The quartic equation x4 + bx3 + cx2 + dx + e = 0 takes more
work to solve and its solution relies on the solution to the cubic
equation. The key idea (following Wikipedia) is to rewrite the left
side of its as a product (x2 + px + q)(x2 + rx + s) for suitable r and
s, thus reducing the original quartic to two quadratics. Equating
coefficients on both sides to solve for p,q, r , s, we get
b = p + r ,c = q + s + pr ,d = ps + qr ,e = qs. Now a trick similar to
the one used above for cubic equations helps us again:
changing the variable x = y − b

4 , we may assume that b = 0,
whence r = −p. Then c + p2 = s + q and d

p = s − q (if p = 0 then
d = 0 and the original quartic equation reduces to a quadratic
equation in x2). Since (s + q)2 − (s − q)2 = 4sq = 4e, we get
(c + p2)2 − (d

p )
2 = 4e, whence if we set P = p2, we get

P3 + 2cP2 + (c2 − 4e)P − d2 = 0. This last equation is called “the”
resolvent cubic (in fact any of several cubic equations could be
used to solve the quartic equation).
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Solving for p, setting r = −p, 2s = c + p2 + d
p , 2q = c + p2 − d

p , we
get a pair of quadratic equations x2 + px + q = 0 and
x2 + rs + s = 0; the two roots of each of them combine to
produce the four roots of the quartic. The three roots of the
cubic equation arise from the three ways to pair up the four
roots of the quartic equation, each of which leads to a different
pair of quadratic polynomials with product x4 + cx2 + dx + e.
Recall also that the symmetric group S4 is solvable precisely
because its Klein four-subgroup K , consisting of the permutations
(12)(34), (13)(24), and (14)(23) in addition to the identity, is
normal. The quotient S4/K is isomorphic to S3. Thus it is entirely
predictable from group theory alone that the solution to the
quartic equation crucially involves the solution to the cubic one.
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It is also quite interesting to observe that if an irreducible
polynomial q of prime degree p can be solved by radicals at all,
then in fact it can be so solved (in principle) pretty easily. The key
fact is that the Galois group G of any such q acts transitively on
its roots. It is an easy exercise to show in general that if a group
acts transitively on a set S, then the orbits in S of any normal
subgroup of the group are permuted by the action of the group;
in particular, any two orbits of the normal subgroup have the
same size. In the present situation, the group G has a nontrivial
abelian normal subgroup A, which also acts transitively on the
roots of q. As its order is a multiple of p it must contain the cyclic
subgroup C generated by p-cycle. No subgroup strictly
containing C is abelian, so we must have A = C.
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It follows that G is a subgroup of N(C), the normalizer of C in Sp,
which is isomorphic to Zp n Z∗p, the semidirect product of Zp and
its automorphism group Z∗p. The group N(C) has order p(p − 1); it
has a cyclic normal subgroup and the quotient by this group is
also cyclic. In field-theoretic terms, this implies that after
adjoining primitive pth and (p − 1)st roots of 1 to the basefield of
the polynomial q, one can always solve it by radicals by
adjoining just one more pth root and one more (p − 1)st root (if it
can be solved by radicals at all).
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In particular, if p = 5, there are only three possible Galois groups
of irreducible quintic polynomials over Q that are solvable by
radicals, namely Z5, the dihedral group D5 of order 10, and the
group Z5 n Z∗5 mentioned on the last slide. In the text on p. 639,
an explicit purely numerical criterion is given for a quintic
polynomial over Q to be solvable by radicals (which takes half a
page to state): this holds if and only if another polynomial
constructed from the coefficients of the given one has a rational
root.
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The very rich theory of finite Galois extensions of Q has no
counterpart for the real field R. There is just one proper finite
extension of R and none at all of C, as follows from the next
result.

Fundamental Theorem of Algebra: Theorem 35, p. 616
The only finite extensions of R are R and C. The only finite
extension of C is C itself.
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Proof.
Since R has characteristic 0, any extension of it is separable, so
any finite extension is contained in a Galois extension. Given
such an extension E, with Galois group G, let S be a 2-Sylow
subgroup of G. This corresponds to an extension E ′ of R of odd
degree. But now any polynomial p(x) of odd degree is such that
p(x) is large and positive for x large enough and positive (or
large enough and negative), and then large and negative for x
large enough and negative (or large enough and positive),
whence by continuity p must have a real root. Thus there are no
nonlinear irreducible polynomials in R[x ] of odd degree, whence
we must have E ′ = R, S = G. Passing now to a normal subgroup
of S of index 2, we get a quadratic extension of R, which must
be C by the quadratic formula. Finally, C is closed under square
roots, so does not admit a quadratic extension, and so no finite
extension at all.
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