
Lecture 1-17: Solvability by radicals

January 17, 2025

Lecture 1-17: Solvability by radicals January 17, 2025 1 / 1



As mentioned last time, one of Galois’s motivations for
developing his theory was determining conditions under which a
formula exists for the roots of a polynomial in terms of its
coefficients, using only algebraic operations and the extraction
of roots. Of course the quadratic formula is the most familiar
example of such a formula; centuries before Galois’s time similar
formulas were known for cubic and quartic polynomials. Without
asking for a universal formula for the roots of any polynomial of
degree n ≥ 5, one can ask whether any particular polynomial
admits such a formula for its roots. I will answer that question by
using the Galois group of the polynomial.
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More precisely, one has the following

Definition, p. 627
A nonconstant polynomial p over a field K is said to be solvable
by radicals if there is an extension L of a splitting field S for p over
K and a chain of fields K0 = K ⊂ K1 ⊂ · · · ⊂ Km = L such that each
Ki = Ki−1(αi) for some αi with βi = αni

i ∈ Ki−1 for some positive
integer mi .

Clearly any expression built from the coefficients of p using only
field operations and roots represents an element of such a field
L. It is important for technical reasons not to insist in this definition
that L be a spitting field for p over K , but only to contain such a
field.

Lecture 1-17: Solvability by radicals January 17, 2025 3 / 1



As already mentioned, I will give a criterion for a polynomial to
be solvable by radicals in terms of its Galois group. To do this I
need a group-theoretic definition (introduced by Galois himself).

Definition, p. 105
A group G is called solvable if there is a finite chain
G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = 1 of normal subgroups of G such that
the quotients Gi−1/Gi are abelian.

This definition makes sense for any group, but in this course I will
deal only with the finite case. It is clear from the definition that
any quotient H/N of a subgroup H of a solvable group G by a
normal subgroup is again solvable. The main result is

Galois Criterion: Theorem 39, p. 628
A nonconstant polynomial p over a field K of characteristic 0 is
solvable by radicals if and only if its Galois group G is solvable.
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Proof.
Suppose first that p is solvable by radicals and let
K0 = K ⊂ K1 ⊂ · · · ⊂ Km = L be a chain of fields as in the definition.
The first step is to insert a new field and reduce to the case
where each Ki is the full splitting field of xni − βi over Ki−1. Let N
be the product of the integers ni appearing in the definition of
solvability by radicals and let K ′

0 be the splitting field of xN − 1
over K . Inductively let K ′

i be the spitting field of xni − βi over K ′
i−1

for i ≥ 1. Then K ′
i is generated by the same element αi that

generates Ki over Ki−1.
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Proof.
By enlarging the fields in the chain, we may also assume that
each K ′

i is Galois over K : having extended K ′
i−1 by an nith root of

βi to get K ′
i , extend it further by nith roots of all conjugates of βi in

K (that is, other roots of the minimal polynomial of βi over K ),
continuing to denote this field by K ′

i . Then K ′
i is the splitting field

of a polynomial over K , so is Galois over K and K ′
i−1.
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Proof.
To the ascending chain K0 ⊂ K ′

0 ⊂ · · · ⊂ K ′
m of fields the Galois

correspondence attaches the descending chain
G′ = G0 ⊃ G1 ⊃ · · · ⊃ Gm = 1 of subgroups of G′ = Gal(K ′

m/K ),
with each Gi normal in both G and Gi−1 since the K ′

i are Galois
over K0. The Galois group Hi of K ′

i over K ′
i−1 is then the quotient

group Gi−1/Gi . For i = 1 this is the Galois group of xN − 1 over K
for some N; this group is a subgroup of the group Z∗

N of
multiplicative units in ZN , since any automorphism of a
cyclotomic field sends a primitive root of 1 to some power of
itself. In particular it is abelian.
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Proof.
For i > 1 Hi is the Galois group of a suitable product
(xni − γ1) . . . (xni − γr) for various γj over a field with ni distinct roots
of 1. Letting αj be an nith root of γj in K ′

i , we find that any
automorphism of K ′

i fixing K ′
i−1 fixes every nith root of 1 and sends

each αj to itself times such a root. It follows that Hi is abelian,
being a subgroup of the product of r copies of the cyclic group
Zni of order ni . Hence G′ is solvable. The Galois group of S (or of
p) is then a quotient of a subgroup of G, so is also solvable, as
claimed.
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Proof.
Now conversely suppose that the Galois group G of a
polynomial p ∈ K [x ] with splitting field S is solvable and let
G = G0 ⊃ G1 ⊃ · · · ⊃ Gm = 1 be a chain of normal subgroups
with Gi−1/Gi abelian for all i. By the classification of finite abelian
groups, we may insert other subgroups into this chain to arrive at
another chain G = G0 ⊃ · · · ⊃ G′

n = 1 such that Hi = G′
i−1/G′

i is
cyclic for all i, say of order ni . Corresponding to this chain we get
a chain of subfields K0 = K ⊂ · · ·Kn = S with each Ki Galois over
Ki−1 with cyclic Galois group of order ni .
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Proof.
Once again, it is convenient at this point to adjoin some roots of
1. Let N be the product of the ni and let K ′

0 the splitting field of
xN − 1 over K0. For i ≥ 1 if Ki is the splitting field of a polynomial pi
over Ki−1 then inductively let K ′

i be the splitting field of pi over
K ′

i−1. Any automorphism of K ′
i fixing K ′

i−1 restricts to an
automorphism of Ki fixing Ki−1, so the Galois group H′

i of K ′
i over

K ′
i−1 is cyclic of order dividing ni . Now it will follow that p can be

solved by radicals if we can show that any Galois extension L of
degree d with cyclic Galois group G over a field K with a full set
of distinct dth roots of 1 is generated by a single element α with
αd ∈ K (Proposition 36, p. 626)
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Proof.
The proof of this last assertion is a beautiful application of
canonical forms of matrices. Let g be a generator of G. Then g
acts on L by a K -linear transformation all of whose eigenvalues lie
in K since it contains a full set of dth roots of 1. Hence g acts on L
by a diagonalizable matrix. But now if x , y ∈ L are eigenvectors
of g with the same eigenvalue β, then g and G fix xy−1, whence
xy−1 ∈ K . Thus all eigenspaces of g have dimension 1 and every
dth root of 1 occurs as an eigenvalue of g exactly once. Letting
α ∈ L be an eigenvector of g whose eigenvalue is a primitive dth
root of 1, it follows that powers of α span L over K and αd is fixed
by G, so lies in K . Hence L = K (α) and αd ∈ K , as desired. The
proof of the Galois Criterion is at last complete.
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Continuing with this line of reasoning, we can now prove a
fundamental negative result of Abel and Galois.

Theorem, p. 629
There are polynomials of degree 5 over Q that are not solvable
by radicals.

Proof.
Note first that the splitting field of any polynomial p over any field
is generated by the roots of this polynomial, which are permuted
by the Galois group, so any Galois group can be naturally
regarded as a subgroup of some permutation group Sn. Now I
claim that an irreducible polynomial q over Q of prime degree p
with exactly p − 2 real roots has Galois group G = Sp.
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Proof.
To see this, note first that G acts transitively on the p roots of q, so
its order must be a multiple of p. By Sylow’s Theorem and
properties of p-groups (or Cauchy’s Theorem), G ⊂ Sp has an
element of order p, which must be a p-cycle c. G also contains
a transposition t , corresponding to complex conjugation in the
splitting field. Replacing c by a suitable power of itself, we may
assume that the roots flipped by the transposition appear next to
each other in the cycle, so that (labelling the roots by integers
from 1 to p) we have c = (12 . . .p), t = (12).
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Proof.
Conjugating t by powers of c, we get the transposition (i, i + 1) in
G for 1 ≤ i ≤ p − 1. But now transpositions of adjacent indices are
well known to generate the entire symmetric group Sp, so
G = Sp: every permutation of the roots of q extends to an
automorphism of its splitting field. Note that this very strong
field-theoretic property was proved using only group theory. Now
the polynomial q = x5 − 6x + 3 is irreducible over Q (by Eisenstein)
and has exactly three real roots (by calculus). Finally q is not
solvable by radicals, by the Galois Criterion, since S5 is not
solvable (its subgroup A5 is simple and thus not solvable). In fact,
none of the roots of q can be expressed in terms of radicals, for if
one could, then since G acts transitively on the roots of q and
sends mth roots to mth roots for any m, all the roots of q could be
so expressed and q could be solved by radicals.
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By the way, given a field K of characteristic p > 0, a Galois
extension of degree p is never an extension by a pth root, since
the polynomial xp − α is never separable over such a field.
Instead, using the Jordan form, one can show that any such
extension of K is generated by an element β with βp − β = α ∈ K .
Both this fact and the corresponding fact in characteristic 0 will
be reproved later, using the cohomology of finite groups.
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