Lecture 1-17: Solvability by radicals

January 17, 2025

Lecture 1-17: Solvability by radicals

January 17, 2025 1/

< ∃→

As mentioned last time, one of Galois's motivations for

developing his theory was determining conditions under which a formula exists for the roots of a polynomial in terms of its coefficients, using only algebraic operations and the extraction of roots. Of course the quadratic formula is the most familiar example of such a formula; centuries before Galois's time similar formulas were known for cubic and quartic polynomials. Without asking for a *universal* formula for the roots of any polynomial of degree n > 5, one can ask whether any particular polynomial admits such a formula for its roots. I will answer that question by using the Galois group of the polynomial.

More precisely, one has the following

Definition, p. 627

A nonconstant polynomial p over a field K is said to be *solvable* by radicals if there is an extension L of a splitting field S for p over K and a chain of fields $K_0 = K \subset K_1 \subset \cdots \subset K_m = L$ such that each $K_i = K_{i-1}(\alpha_i)$ for some α_i with $\beta_i = \alpha_i^{n_i} \in K_{i-1}$ for some positive integer m_i .

Clearly any expression built from the coefficients of p using only field operations and roots represents an element of such a field L. It is important for technical reasons not to insist in this definition that L be a spitting field for p over K, but only to contain such a field.

イロン イ理 とくほ とくほ とう

As already mentioned, I will give a criterion for a polynomial to be solvable by radicals in terms of its Galois group. To do this I need a group-theoretic definition (introduced by Galois himself).

Definition, p. 105

A group G is called *solvable* if there is a finite chain $G = G_0 \supset G_1 \supset \cdots \supset G_n = 1$ of normal subgroups of G such that the quotients G_{i-1}/G_i are abelian.

This definition makes sense for any group, but in this course I will deal only with the finite case. It is clear from the definition that any quotient H/N of a subgroup H of a solvable group G by a normal subgroup is again solvable. The main result is

Galois Criterion: Theorem 39, p. 628

A nonconstant polynomial p over a field K of characteristic 0 is solvable by radicals if and only if its Galois group G is solvable.

イロン イ理 とくほ とくほ とう

Suppose first that p is solvable by radicals and let $K_0 = K \subset K_1 \subset \cdots \subset K_m = L$ be a chain of fields as in the definition. The first step is to insert a new field and reduce to the case where each K_i is the full splitting field of $x^{n_i} - \beta_i$ over K_{i-1} . Let N be the product of the integers n_i appearing in the definition of solvability by radicals and let K'_0 be the splitting field of $x^{N} - 1$ over K. Inductively let K'_i be the splitting field of $x^{n_i} - \beta_i$ over K'_{i-1} for $i \ge 1$. Then K'_i is generated by the same element α_i that generates K_i over K_{i-1} .

By enlarging the fields in the chain, we may also assume that each K'_i is Galois over K: having extended K'_{i-1} by an n_i th root of β_i to get K'_i , extend it further by n_i th roots of all conjugates of β_i in K (that is, other roots of the minimal polynomial of β_i over K), continuing to denote this field by K'_i . Then K'_i is the splitting field of a polynomial over K, so is Galois over K and K'_{i-1} .

イロト イ団ト イヨト イヨト

To the ascending chain $K_0 \subset K'_0 \subset \cdots \subset K'_m$ of fields the Galois correspondence attaches the descending chain $G' = G_0 \supset G_1 \supset \cdots \supset G_m = 1$ of subgroups of $G' = \text{Gal}(K'_m/K)$, with each G_i normal in both G and G_{i-1} since the K'_i are Galois over K_0 . The Galois group H_i of K'_i over K'_{i-1} is then the quotient group G_{i-1}/G_i . For i = 1 this is the Galois group of $x^N - 1$ over K for some N; this group is a subgroup of the group \mathbb{Z}_N^* of multiplicative units in \mathbb{Z}_N , since any automorphism of a cyclotomic field sends a primitive root of 1 to some power of itself. In particular it is abelian.

イロン イボン イヨン トヨ

For i > 1 H_i is the Galois group of a suitable product $(x^{n_i} - \gamma_1) \dots (x^{n_i} - \gamma_r)$ for various γ_j over a field with n_i distinct roots of 1. Letting α_j be an n_i th root of γ_j in K'_i , we find that any automorphism of K'_i fixing K'_{i-1} fixes every n_i th root of 1 and sends each α_j to itself times such a root. It follows that H_i is abelian, being a subgroup of the product of r copies of the cyclic group \mathbb{Z}_{n_i} of order n_i . Hence G' is solvable. The Galois group of S (or of p) is then a quotient of a subgroup of G, so is also solvable, as claimed.

Now conversely suppose that the Galois group G of a polynomial $p \in K[x]$ with splitting field S is solvable and let $G = G_0 \supset G_1 \supset \cdots \supset G_m = 1$ be a chain of normal subgroups with G_{i-1}/G_i abelian for all i. By the classification of finite abelian groups, we may insert other subgroups into this chain to arrive at another chain $G = G_0 \supset \cdots \supset G'_n = 1$ such that $H_i = G'_{i-1}/G'_i$ is cyclic for all i, say of order n_i . Corresponding to this chain we get a chain of subfields $K_0 = K \subset \cdots K_n = S$ with each K_i Galois over K_{i-1} with cyclic Galois group of order n_i .

Once again, it is convenient at this point to adjoin some roots of 1. Let N be the product of the n_i and let K'_0 the splitting field of $x^N - 1$ over K_0 . For $i \ge 1$ if K_i is the splitting field of a polynomial p_i over K_{i-1} then inductively let K'_i be the splitting field of p_i over K'_{i-1} . Any automorphism of K'_i fixing K'_{i-1} restricts to an automorphism of K_i fixing K_{i-1} , so the Galois group H'_i of K'_i over K'_{i-1} is cyclic of order dividing n_i . Now it will follow that p can be solved by radicals if we can show that any Galois extension L of degree d with cyclic Galois group G over a field K with a full set of distinct dth roots of 1 is generated by a single element α with $\alpha^d \in K$ (Proposition 36, p. 626)

イロト イポト イヨト イヨト 三日

The proof of this last assertion is a beautiful application of canonical forms of matrices. Let g be a generator of G. Then g acts on L by a K-linear transformation all of whose eigenvalues lie in K since it contains a full set of dth roots of 1. Hence g acts on L by a diagonalizable matrix. But now if $x, y \in L$ are eigenvectors of g with the same eigenvalue β , then g and G fix xy^{-1} , whence $xy^{-1} \in K$. Thus all eigenspaces of g have dimension 1 and every dth root of 1 occurs as an eigenvalue of g exactly once. Letting $\alpha \in L$ be an eigenvector of g whose eigenvalue is a primitive dth root of 1, it follows that powers of α span L over K and α^d is fixed by G, so lies in K. Hence $L = K(\alpha)$ and $\alpha^d \in K$, as desired. The proof of the Galois Criterion is at last complete.

ヘロト ヘ回ト ヘヨト ヘヨト

Continuing with this line of reasoning, we can now prove a fundamental negative result of Abel and Galois.

Theorem, p. 629

There are polynomials of degree 5 over ${\ensuremath{\mathbb Q}}$ that are not solvable by radicals.

Proof.

Note first that the splitting field of any polynomial p over any field is generated by the roots of this polynomial, which are permuted by the Galois group, so any Galois group can be naturally regarded as a subgroup of some permutation group S_n . Now I claim that an irreducible polynomial q over \mathbb{Q} of prime degree pwith exactly p - 2 real roots has Galois group $G = S_p$.

イロン イ理 とくほ とくほ とう

To see this, note first that G acts transitively on the p roots of q, so its order must be a multiple of p. By Sylow's Theorem and properties of p-groups (or Cauchy's Theorem), $G \subset S_p$ has an element of order p, which must be a p-cycle c. G also contains a transposition t, corresponding to complex conjugation in the splitting field. Replacing c by a suitable power of itself, we may assume that the roots flipped by the transposition appear next to each other in the cycle, so that (labelling the roots by integers from 1 to p) we have $c = (12 \dots p), t = (12)$.

ヘロン ヘアン ヘビン ヘビン

Conjugating t by powers of c, we get the transposition (i, i + 1) in G for 1 < i < p - 1. But now transpositions of adjacent indices are well known to generate the entire symmetric group S_{p} , so $G = S_{D}$: every permutation of the roots of q extends to an automorphism of its splitting field. Note that this very strong field-theoretic property was proved using only group theory. Now the polynomial $q = x^5 - 6x + 3$ is irreducible over \mathbb{Q} (by Eisenstein) and has exactly three real roots (by calculus). Finally q is not solvable by radicals, by the Galois Criterion, since S_5 is not solvable (its subgroup A_5 is simple and thus not solvable). In fact, none of the roots of q can be expressed in terms of radicals, for if one could, then since G acts transitively on the roots of q and sends mth roots to mth roots for any m, all the roots of q could be so expressed and *q* could be solved by radicals.

By the way, given a field *K* of characteristic p > 0, a Galois extension of degree *p* is *never* an extension by a *p*th root, since the polynomial $x^p - \alpha$ is never separable over such a field. Instead, using the Jordan form, one can show that any such extension of *K* is generated by an element β with $\beta^p - \beta = \alpha \in K$. Both this fact and the corresponding fact in characteristic 0 will be reproved later, using the cohomology of finite groups.