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Continuing from last time, I now head toward a bijection
between subgroups of a Galois group and intermediate fields in
the corresponding Galois extension. But before I do this, I need
to prove a result of considerable interest in its own right.

The Primitive Element Theorem (p. 595)
Let K be a finite separable extension of F . Then K is simple, so
that there is α ∈ K with F(α) = K .
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Proof.
If F and K are finite, this is clear, for we can take α to be a cyclic
generator of the multiplicative group of K . So assume that F is
infinite. We know that K is finitely generated over F ; by induction
on the number of generators it suffices to show that any subfield
K ′ = F(β, γ) of K generated over F by two elements is in fact
generated by only one element. We know by the last result last
time that there are only finitely many intermediate fields
between F and the Galois closure K ′ of K ′, so only finitely many
intermediate fields between F and K ′. Letting c1,c2 run over F , it
follows that two of the fields F(β + c1γ), F(β + c2γ) coincide. But
then (c2 − c1)γ and γ both lie in both fields K (β + ciγ) and both
of these fields coincide with K ′, as desired.
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Next I prove a result also of independent interest which says that
any finite group of automorphisms acting on a field is the Galois
group of that field over the fixed field.

Theorem 9, p. 570
Let G be a finite group of automorphisms of a field K . Then K is
Galois over the fixed field K G with Galois group G; in particular,
[K : K G] = |G|.
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Proof.
Let α ∈ K and let α = α1, . . . , αm be the distinct conjugates of α
under G. Since G permutes the αi , it follows that the coefficients

of the polynomial p =
m∏

i=1
(x − αi) are fixed by G and clearly

p(α) = 0. Hence the elements of K are at least algebraic and
separable over K G. Choose β ∈ K of maximal degree d over K G;
then d ≤ n = |G|. Given any α ∈ K , the Primitive Element
Theorem shows that K G(α, β) is generated by a single element γ,
of degree at most d by choice of β; but K G(β) already has
degree d, so α ∈ K G(β) and β generates K over K G. Thus K is
finite over K G, of degree at most n; but G is a group of n distinct
automorphisms of K fixing K G. Hence [K : K G] = n and β has n
distinct conjugates β1, . . . , βn under G. Finally, K is the splitting
field of the separable polynomial

∏
(x − βi) over K G, so K is Galois

over K G with Galois group G.
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The payoff is

The Galois correspondence: Theorem 14, p. 574
Let K be finite and Galois over K , with Galois group G. Then the
map H ↔ K H establishes an order-reversing bijection between
subgroups H of G and subfield of K containing F . K is also Galois
over any intermediate field K H , with Galois group H and degree
|H|.

We have already seen that every field between F and K is K H for
some subgroup H; the previous result shows that H is the Galois
group of K over K H and so is uniquely determined by K H . As
noted above, it is clear that the correspondence is
order-reversing.
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As an immediate corollary we get

Galois correspondence II

With notation as above, two intermediate fields K H ,K H′
are

conjugate by g ∈ G if and only if the subgroups H and H′ are
conjugate by g. A field K H is preserved (as a set) by all g ∈ G if
and only if H is normal in G, in which case the Galois group of K H

over F is the quotient group G/H.

In general the field K H is preserved by g ∈ G exactly when g lies
in the normalizer NGH of H in G; the quotient group NGH/H is the
automorphism group of K H over F . We also have
[K H : F ] = [G : H], the index of H in G, whether or not H is normal
in G. It is easy to check that the composite K HK H′

of the subfields
fixed by subgroups H,H′ is just the subfield K H∩H′

fixed by H ∩ H′.
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Example

Let K be the splitting field x4 − 2 over Q. This field is generated
over Q by α = 21/4, the positive real fourth root of 2, and i; since
x4 − 2 is irreducible over Q while i is not real, we see that
[K : Q] = 8. It follows that x4 − 2 is irreducible over Q[i] as well as Q.
Thus there is an automorphism r of K fixing Q and i and sending α
to αi (one of the other roots of its minimal polynomial). One
checks directly that r4 = 1. Then complex conjugation preserves
K ; denote its restriction to K by s. One easily checks that
s2 = 1, srs = r3 = r−1. But these are exactly the defining relations
for D4, the dihedral group of order 8. Thus the Galois group of K
over Q is D4. Note that one might have expected this result,
given that the four roots of x4 − 2 in the complex plane happen
to be the vertices of a square, whose geometric symmetries
happen to match the algebraic symmetries of the roots exactly.
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Example
Continuing this example, we note that there are three subgroups
of D4 of order 4, all of them normal, namely the cyclic one ⟨r⟩
consisting of all the reflections and the Klein four-groups
generated by the central rotation r2 and either s or sr . These
groups correspond respectively to the Galois extensions
Q[i],Q[

√
2], and Q[

√
2i] of Q. Next, there are five subgroups of

order 2, four of them generated by a reflection sr i and the other
by r2. Only the last of these is normal; it corresponds to the Galois
extension Q[

√
2, i]. The others correspond to Q[α],Q[αi],Q[αζ],

and Q[αiζ], where ζ = e2π/8 is a primitive 8th root of 1 (which lies
in K ). Finally, of course, there is the trivial subgroup 1,
corresponding to K and D4, corresponding to Q.
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The coincidence of geometric and algebraic symmetries in this
example is however misleading. For example, the Galois group
of the very similar polynomial x5 − 2 over Q is not the dihedral
group D5 of order 10. Here the splitting field contains the
cyclotomic field Q[e2πi/5], which has degree 4 over Q, and the
field Q[21/5], which has degree 5, so its degree is 20. The Galois
group is the semidirect product of the cyclic group Z5 and its
automorphism group Z∗

5 of multiplicative units, which is cyclic of
order 4. The roots of x5 − 2 form a regular pentagon in C, but half
of the automorphisms in the Galois group fail to be symmetries of
this pentagon.
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On pp. 577–581 of the text, the example of the splitting field K of
x8 − 2 over Q is worked out in great detail. We saw earlier that
this field has degree 16 over Q, so one might expect the Galois
group to be dihedral of order 16. This is almost but not quite the
case. We still get an automorphism r of K sending the real
positive root β = 21/8 to βζ and fixing i, with ζ as above, and we
still have the conjugation automorphism s, but now it turns out
that srs = r3 rather than srs = r−1. The Galois group is defined by
this relation together with r8 = s2 = 1; it is called quasi-dihedral.
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Returning to the constructibility of regular n-gons one last time,
we now see that if n is the product of a power of 2 and distinct
Fermat primes, then the cyclotomic field L = Q[e2πi/n] has
degree a power of 2 over Q, so that its Galois group is a 2-group.
We know that any such group admits a chain of normal
subgroups, of index 2 in the next bigger one, so we can get to L
from Q by a sequence of quadratic extensions. Hence the real
and imaginary parts of e2πi/n are both constructible with
compass and straightedge, as is the regular n-gon. Gauss
proved this by a direct calculation, without the benefit of Galois
theory. Later a German professor spent ten years writing out an
explicit construction of the regular 65537-gon, which is still
lovingly preserved under glass.
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Next time I will use Galois theory to address the problem that
originally motivated Galois, namely to decide given a
polynomial p over Q whether there is an expression for its roots
using only arithmetic operations and mth roots of numbers.
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