Lecture 1-15: The Primitive Element Theorem and the Galois correspondence

January 15, 2025

Lecture 1-15: The Primitive Element Theore

January 15, 2025 1 / 1

Image: A matrix

Continuing from last time, I now head toward a bijection between subgroups of a Galois group and intermediate fields in the corresponding Galois extension. But before I do this, I need to prove a result of considerable interest in its own right.

The Primitive Element Theorem (p. 595)

Let K be a finite separable extension of F. Then K is simple, so that there is $\alpha \in K$ with $F(\alpha) = K$.

Proof.

If F and K are finite, this is clear, for we can take α to be a cyclic generator of the multiplicative group of K. So assume that F is infinite. We know that K is finitely generated over F; by induction on the number of generators it suffices to show that any subfield $K' = F(\beta, \gamma)$ of K generated over F by two elements is in fact generated by only one element. We know by the last result last time that there are only finitely many intermediate fields between F and the Galois closure $\overline{K'}$ of K', so only finitely many intermediate fields between F and K'. Letting c_1, c_2 run over F, it follows that two of the fields $F(\beta + c_1\gamma), F(\beta + c_2\gamma)$ coincide. But then $(c_2 - c_1)\gamma$ and γ both lie in both fields $K(\beta + c_i\gamma)$ and both of these fields coincide with K', as desired.

Next I prove a result also of independent interest which says that any finite group of automorphisms acting on a field is the Galois group of that field over the fixed field.

Theorem 9, p. 570

Let G be a finite group of automorphisms of a field K. Then K is Galois over the fixed field K^G with Galois group G; in particular, $[K : K^G] = |G|$.

Proof.

Let $\alpha \in K$ and let $\alpha = \alpha_1, \ldots, \alpha_m$ be the distinct conjugates of α under G. Since G permutes the α_i , it follows that the coefficients of the polynomial $p = \prod (x - \alpha_i)$ are fixed by G and clearly $p(\alpha) = 0$. Hence the elements of K are at least algebraic and separable over K^G . Choose $\beta \in K$ of maximal degree d over K^G ; then $d \leq n = |G|$. Given any $\alpha \in K$, the Primitive Element Theorem shows that $K^{G}(\alpha,\beta)$ is generated by a single element γ_{i} of degree at most d by choice of β ; but $K^{G}(\beta)$ already has degree d, so $\alpha \in K^{G}(\beta)$ and β generates K over K^{G} . Thus K is finite over K^G , of degree at most *n*; but G is a group of *n* distinct automorphisms of K fixing K^G . Hence $[K: K^G] = n$ and β has n distinct conjugates β_1, \ldots, β_n under G. Finally, K is the splitting field of the separable polynomial $\prod (x - \beta_i)$ over K^G , so K is Galois over K^G with Galois aroup G.

ъ

ヘロン 人間 とくほ とくほ とう

The payoff is

The Galois correspondence: Theorem 14, p. 574

Let *K* be finite and Galois over *K*, with Galois group *G*. Then the map $H \leftrightarrow K^H$ establishes an order-reversing bijection between subgroups *H* of *G* and subfield of *K* containing *F*. *K* is also Galois over any intermediate field K^H , with Galois group *H* and degree |H|.

We have already seen that every field between F and K is K^{H} for some subgroup H; the previous result shows that H is the Galois group of K over K^{H} and so is uniquely determined by K^{H} . As noted above, it is clear that the correspondence is order-reversing.

ヘロン 人間 とくほ とくほ とう

As an immediate corollary we get

Galois correspondence II

With notation as above, two intermediate fields K^H , $K^{H'}$ are conjugate by $g \in G$ if and only if the subgroups H and H' are conjugate by g. A field K^H is preserved (as a set) by all $g \in G$ if and only if H is normal in G, in which case the Galois group of K^H over F is the quotient group G/H.

In general the field K^H is preserved by $g \in G$ exactly when g lies in the normalizer N_GH of H in G; the quotient group N_GH/H is the automorphism group of K^H over F. We also have $[K^H : F] = [G : H]$, the index of H in G, whether or not H is normal in G. It is easy to check that the composite $K^H K^{H'}$ of the subfields fixed by subgroups H, H' is just the subfield $K^{H\cap H'}$ fixed by $H \cap H'$.

ヘロン 人間 とくほ とくほ とう

Example

Let K be the splitting field $x^4 - 2$ over \mathbb{O} . This field is generated over \mathbb{Q} by $\alpha = 2^{1/4}$, the positive real fourth root of 2, and *i*; since $x^4 - 2$ is irreducible over \mathbb{Q} while *i* is not real, we see that $[K:\mathbb{Q}] = 8$. It follows that $x^4 - 2$ is irreducible over $\mathbb{Q}[i]$ as well as \mathbb{Q} . Thus there is an automorphism r of K fixing \mathbb{Q} and i and sending α to αi (one of the other roots of its minimal polynomial). One checks directly that $r^4 = 1$. Then complex conjugation preserves K; denote its restriction to K by s. One easily checks that $s^2 = 1$, $srs = r^3 = r^{-1}$. But these are exactly the defining relations for D_4 , the dihedral group of order 8. Thus the Galois group of K over \mathbb{Q} is D_4 . Note that one might have expected this result, given that the four roots of $x^4 - 2$ in the complex plane happen to be the vertices of a square, whose geometric symmetries happen to match the algebraic symmetries of the roots exactly.

ヘロン ヘアン ヘビン ヘビン

Example

Continuing this example, we note that there are three subgroups of D_4 of order 4, all of them normal, namely the cyclic one $\langle r \rangle$ consisting of all the reflections and the Klein four-groups generated by the central rotation r^2 and either s or sr. These groups correspond respectively to the Galois extensions $\mathbb{Q}[i], \mathbb{Q}[\sqrt{2}], \text{ and } \mathbb{Q}[\sqrt{2}i] \text{ of } \mathbb{Q}.$ Next, there are five subgroups of order 2, four of them generated by a reflection sr^i and the other by r^2 . Only the last of these is normal; it corresponds to the Galois extension $\mathbb{Q}[\sqrt{2}, i]$. The others correspond to $\mathbb{Q}[\alpha], \mathbb{Q}[\alpha i], \mathbb{Q}[\alpha \zeta]$, and $\mathbb{Q}[\alpha i \zeta]$, where $\zeta = e^{2\pi/8}$ is a primitive 8th root of 1 (which lies in K). Finally, of course, there is the trivial subgroup 1, corresponding to K and D_{1} , corresponding to \mathbb{O} .

イロン イ理 とくほ とくほ とう

The coincidence of geometric and algebraic symmetries in this example is however misleading. For example, the Galois group of the very similar polynomial $x^5 - 2$ over \mathbb{Q} is *not* the dihedral group D_5 of order 10. Here the splitting field contains the cyclotomic field $\mathbb{Q}[e^{2\pi i/5}]$, which has degree 4 over \mathbb{Q} , and the field $\mathbb{Q}[2^{1/5}]$, which has degree 5, so its degree is 20. The Galois group is the semidirect product of the cyclic group \mathbb{Z}_5 and its automorphism group \mathbb{Z}_5^* of multiplicative units, which is cyclic of order 4. The roots of $x^5 - 2$ form a regular pentagon in \mathbb{C} , but half of the automorphisms in the Galois group fail to be symmetries of this pentagon.

・ロト ・ 同ト ・ ヨト ・ ヨト …

On pp. 577–581 of the text, the example of the splitting field K of $x^8 - 2$ over \mathbb{Q} is worked out in great detail. We saw earlier that this field has degree 16 over \mathbb{Q} , so one might expect the Galois group to be dihedral of order 16. This is almost but not quite the case. We still get an automorphism r of K sending the real positive root $\beta = 2^{1/8}$ to $\beta\zeta$ and fixing i, with ζ as above, and we still have the conjugation automorphism s, but now it turns out that $srs = r^3$ rather than $srs = r^{-1}$. The Galois group is defined by this relation together with $r^8 = s^2 = 1$; it is called *quasi-dihedral*.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Returning to the constructibility of regular *n*-gons one last time, we now see that if *n* is the product of a power of 2 and distinct Fermat primes, then the cyclotomic field $L = \mathbb{Q}[e^{2\pi i/n}]$ has degree a power of 2 over \mathbb{Q} , so that its Galois group is a 2-group. We know that any such group admits a chain of normal subgroups, of index 2 in the next bigger one, so we can get to Lfrom Q by a sequence of quadratic extensions. Hence the real and imaginary parts of $e^{2\pi i/n}$ are both constructible with compass and straightedge, as is the regular *n*-gon. Gauss proved this by a direct calculation, without the benefit of Galois theory. Later a German professor spent ten years writing out an explicit construction of the regular 65537-gon, which is still lovingly preserved under glass.

イロン イロン イヨン イヨン 三日

Next time I will use Galois theory to address the problem that originally motivated Galois, namely to decide given a polynomial p over \mathbb{Q} whether there is an expression for its roots using only arithmetic operations and *m*th roots of numbers.