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As promised last time, I now bring groups into the picture.

Definition, p. 558
Given an extension K of a field F , the automorphism group of K
over F , denoted Aut(K/F), is the group of automorphisms of K
fixing every element of F .

Here are two easy examples (p. 559). If F = Q,K = Q(
√

2), then
an automorphism of F fixing K must send

√
2 either to itself or its

negative. The latter possibility indeed works since the minimal
polynomial of

√
2 over Q is x2 − 2 and −

√
2 is a root of this

polynomial. Hence Aut(K/F) is cyclic of order 2. On the other
hand, if K = F(α) = F(21/3), then α is the only root of x3 − 2 in K
(the other two roots being complex), so Aut(K/F) is the trivial
group.

Lecture 1-13: Galois theory January 13, 2025 2 / 1



The key result is then

Theorem
If K is a finite extension of F , then Aut(K/F) has order at most
[K : F ]. Equality holds if and only if K is the splitting field of a
separable polynomial over F .

Proof.
Let K be generated by α1, . . . , αm over F (for example, let the αi
be a basis of K over F). Let p1 be the minimal polynomial of α1
over F , of degree d1. An automorphism ϕ of K fixing F must send
α1 to a root of p1; there are at most d1 roots of p1 in K , so at most
d1 choices for ϕ(α1). Having chosen β1 = ϕ(α1), let
F1 = F(α1), F ′

1 = F(β1), and let p2 be the minimal polynomial of α2
over F1, of degree d2. Then β2 = ϕ(α2).must be a root of
ϕ(p2) ∈ F ′[x ]; there are at most d2 choices for this root.
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Proof.
Continuing in this way, defining polynomials p3,p4, . . . of degrees
d3, . . . ,dm, one finds that there are at most d = d1d2 . . .dm
choices for ϕ and the degree [K : F ] equals d, whence the first
assertion. If K is the splitting field of a separable polynomial q
over F then one can choose the αi above to be roots of q and
all the polynomials pi , ϕ(pi) divide ϕ(q) = q; moreover, there are
always exactly di choices for ϕ(αi), since q has a full
complement of distinct roots in K . Hence equality holds in the
theorem. Conversely, if equality holds, then for any choice of
αi ,K must contain all roots of the minimal polynomial qi of αi over
F and these roots are distinct, since otherwise the count of
automorphisms of K over F would fall behind the maximum value
and could never catch up. Since the qi are irreducible no two of
them have any roots in common. Hence K is the splitting field of
the separable product q of the distinct qi .
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The splitting field K of a separable polynomial p over a field F is
called a Galois extension of F and Aut(K/F) is called the Galois
group of K over F (p. 562); it is often denoted Gal(K/F). It is also
called the Galois group of p (over F). Thus we see that among
finite extensions Galois extensions are precisely those with the
maximum symmetry.

Theorem 13, p. 572
If K is finite and Galois over F then it contains the splitting field
over F of any of its elements and all of its elements are
separable.

Indeed, if α ∈ K has minimal polynomial q, of degree d, then by
counting automorphisms as in the theorem, starting with
counting homomorphisms of F(α) into K , we see that if K fails to
have d distinct roots of p then it admits fewer than [K : F ]
automorphisms fixing K . This proof also shows that any
automorphism of a subfield L of K fixing F extends to an
automorphism of K .
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In a similar way, by counting homomorphisms of a field into a
suitable extension, we can derive a criterion for a finite extension
to be separable.

Lecture 1-13: Galois theory January 13, 2025 6 / 1



Proposition
A finite extension K of F is separable if and only if it admits [K : F ]
distinct homomorphisms fixing F into a suitable extension L, or if
and only if it is generated by separable elements over F .

Proof.
As in the proof of the previous theorem, let α1, . . . , αm be a set of
generators of K over F and let p1 be the minimal polynomial of
α1 over F , of degree d1. If p1 is not separable, then there are
fewer than d1 distinct homomorphisms of F(α1) into any
extension L of K , hence ultimately fewer than [K : F ]
homomorphisms of K into L. If on the other hand αi is separable
over F for all i, with minimal polynomial qi over F(α1, . . . , αi−1),
then qi divides the minimal polynomial pi of αi over F and so is
separable if pi is. Then we get [K : F ] distinct homomorphisms of
K fixing F into (for example) a splitting field of the product of the
pi .
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Moreover, finite separable extensions always sit inside Galois
extensions:

Corollary 23, p. 594
Any finite separable extension K of a field F is contained in a
unique smallest Galois extension.

Let p be the product of the distinct minimal polynomials of a set
of generators of K . The splitting field of p over F is the desired
Galois extension; it contains K since it contains a set of
generators of it.

The minimal Galois extension of a separable extension K is called
the Galois closure of K and often denoted by K .
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As an example, every finite field Fpn is Galois over its prime
subfield Fp, being the splitting field of xpn − x over Fp. It consists
entirely of the roots of this polynomial and nothing else, since if
a,b are two roots then so are a + b,a − b, and ab, by the
Frobenius map, so that the set of roots is closed under the field
operations. Its Galois group is cyclic of order n, being generated
by the Frobenius map sending x to xp. More generally, if m
divides n, then Fpn is also Galois over Fpm , having cyclic Galois
group of order n

m . It is generated by the mth power of the
Frobenius map, which fixes all elements of Fpm . As a
consequence of above results, Fpn is also a splitting field for all
irreducible polynomials of degree n over Fp and all such
polynomials divide xpn − x . There must be at least one such
polynomial, since Fpn is generated over Fp by a single element,
for example a cyclic generator of its multiplicative group. See
section 14.3 of the text.
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Now we head toward the Galois correspondence between
subgroups of the Galois group G of a Galois extension K of F
and fields between F and K . Note first that if H is any subgroup of
Aut(K/F), then the fixed field K H of elements of K fixed by H is
clearly a subfield containing F . If H1,H2 are two such groups with
H1 ⊂ H2, then we have K H1 ⊃ K H2 .
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Lemma
Let K/F be a Galois extension with Galois group G. Then the
fixed field K G is F .

The elements of G fix all elements of F by definition. Conversely, if
α ∈ K , α /∈ F , then α has a minimal polynomial p of degree larger
than one; by a previous proposition all roots of p in its splitting
field are present in K and G acts transitively on them (by the
proof of our first theorem). Thus K G is exactly F , as claimed.
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Proposition; see Theorem 14, p. 574
If K/F is Galois with Galois group G, then every field L between F
and K takes the form K H for some subgroup H of G and K is
Galois over L.

We know that K is the splitting field of some polynomial p over F ,
whence it is also the splitting field of the same polynomial over L
and K is Galois over L. Hence L is the fixed field K H of the Galois
group of K over L, which is by definition a subgroup of G.
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