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I noted last time that I have not quite proved that a field of order
pn exists for all prime powers pn, since I need to verify that the
polynomial xpn − x does not have multiple roots in its splitting
field. More generally, I make the following

Definition, p. 546
A nonconstant polynomial q over a field K is separable (over K )
if q does not have multiple roots in its splitting field. An algebraic
element x of an extension L of K is called separable over K if it
satisfies a separable polynomial over K . We say that L is
separable over K if all of its elements are.
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How can you tell whether a polynomial is separable without
constructing its splitting field? The answer unexpectedly comes
from calculus. I first define the derivative q′ of a polynomial
q =

∑n
i=0 qix i ∈ K [x ] to be

∑n
i=1 iqix i−1 ∈ K [x ], as in Math 124; this

definition does not require the notion of a limit. The sum,
difference, and product rules for polynomials then carry over
from calculus and show that if q has a root α in any extension
field with multiplicity at least two, so that (x − α)2 divides q in this
field, then x − α divides q′ and q,q′ have a nontrivial common
factor. The Euclidean algorithm shows that if q and q′ have a
common factor in L[x ] for some extension L of K , then they have
a common factor already in K [x ].

Lecture 1-10: Multiple roots and separability January 10, 2025 3 / 1



Now specialize down to the case of greatest interest, where
q ∈ K [x ] is irreducible. Then q and q′ cannot have a common
divisor, unless q′ = 0. This certainly cannot happen if the
characteristic of K is 0; in general we have q′ = 0 if and only if
the characteristic of K is p > 0 and q is a polynomial in xp. We
conclude that

Corollary 34, p. 547
Every irreducible polynomial q over a field K of characteristic 0 is
separable. The same holds in characteristic p > 0, provided that
q is not a polynomial in xp.

The polynomial q = xpn − x ∈ Fp[x ] is almost a polynomial in xp,
but not quite; since its derivative is −1, it has no multiple roots in
its splitting field, so that this splitting field has order exactly pn.
Thus a field F1 of order q = pn exists for every prime power pn

and Fq is unique up to isomorphism (Proposition 15, p. 586). We
also see that Fpm is a subfield of Fpn if and only if m divides n, as
mentioned earlier.
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Over a field K of characteristic p one has the “freshman’s
dream” (a + b)p = ap + bp, since by the binomial theorem
(a + b)p =

∑n
i=0
(p

i

)
aibp−i an p divides every binomial coefficient(p

i

)
for 0 < i < p. Since we obviously have (ab)p = apbp for all

a,b ∈ K and xp = 0 if and only if x = 0 it follows that

Definition, p. 549
The Frobenius map sending x to xp is an isomorphism of any field
K of characteristic p > 0 into itself.

Given a nonconstant polynomial q(xp) ∈ K [x ], this polynomial
factors over its splitting field L first as (xp − r1) . . . (xp − rm) for some
ri ∈ L and then as (x − s1)p . . . (x − sm)p for some si ∈ L with sp

i = ri .
Thus whenever separability fails for a polynomial q, it does so
spectacularly: every root of q in its splitting field has multiplicity a
multiple of p. Note also that every element in a finite field F of
characteristic p has a unique pth root (Corollary 36, p. 549),
since the Frobenius map must be an isomorphism of F onto itself
in this case.
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I showed last time that the coefficients of the cyclotomic
polynomial Φm[x ] lie in Z; In fact they are usually ±1; it is not until
n reaches 105 (the product of the first three odd primes) that
coefficients other than ±1 and 0 appear in Φn. I now specialize
down to the case where K = Q.

Theorem 41, p. 554
The polynomial Φn is irreducible in Q[x ] for all n.
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Proof.
By Gauss’s Lemma, it is enough to show that Φn is irreducible in
Z[x ]. Suppose contrarily that Φn factors nontrivially as g(x)h(x),
where g,h ∈ Z[x ] are monic and g is irreducible. As every
positive integer less than n and relatively prime to it is a product
of primes not dividing n, there would have to be a primitive nth
root α and a prime p not dividing n such that α is a root of g
while αp is a root of h. Then h(xp) also has α as a root; by the
irreducibility of g we have g(x)|h(xp) in Z[x ]. Reducing all
coefficients mod p we get that the reduction g(x) divides
h(xp) = (h(x))p in Zp[x ], whence gh = Φn(x) and xn − 1 all have
multiple roots in an extension of Zp. This is absurd, as the
derivative nxn−1 of xn − 1 is nonzero in Zp(x) and has 0 as its only
root.
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This proof was historically one of the first applications of methods
in characteristic p to prove a result in characteristic 0. We now
know that the degree of e2πi/n ∈ C is φ(n) over Q, where φ is the
Euler phi-function. I should mention that although the reduction
of Φn modulo any prime q makes sense and the reduction xn − 1
of xn − 1 is again the product of the Φd as d runs over the divisors
of n it is not generally true that Φn is irreducible in Zq; the above
proof depends heavily on unique factorization in Z.
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Returning to the constructibility of the regular n-gon we now see
that the regular n-gon is not constructible with straightedge and
compass unless n is a power of 2 times product of distinct Fermat
primes, as suggested by earlier results.
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Returning to splitting fields we note that the degree of the
splitting field of a polynomial is in general quite difficult to
compute. For example, consider the polynomial
q = x8 − 2 ∈ Q[x ]. This polynomial is irreducible, by the Eisenstein
Criterion, so the degree of its splitting field over Q is a multiple of
8. If α is the unique real positive root of q, then all of its roots in C
are obtained by multiplying α by an 8th root of 1. A primitive 8th
root of 1 in C is eπi/4 =

√
2

2 +
√

2
2 i and

√
2 = α4 lies already in Q(α).

Thus one obtains a splitting field of q by passing from K = Q(α) to
K ′ = K (i); this is a proper extension since K lies in the real field R
while K ′ does not. The upshot is that the splitting field K ′ has
degree 16 over Q.
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On the other hand, the splitting field L of the very similar
polynomial r = x8 − 3 ∈ Q[x ] has degree 32 over Q. We get to L
from Q(β), β the real positive root of r , by adjoining first

√
2 and

then i, each of these adjunctions multiplying the degree by 2. It
is a bit tricky to prove that

√
2 /∈ Q(β).

Next time we will bring groups into the picture, by looking at
automorphisms of field extensions; these are called Galois
groups. They turn out to have the “right” order (equal to the
degree of the extension) precisely when the extension is the
splitting field of a separable polynomial.
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