HW #2, due 10-11

Math 504A

1. Let G be the free group on two generators x, y. Find a free basis for a normal subgroup N such that G/N is cyclic of order two.

2. Let K be a field. Denote by K^{∞} the vector space of sequences $(k_1, k_2, ...)$ with $k_i \in K$ and all but finitely many k_i equal to 0. Let R be the ring End K^{∞} of endomorphisms of R. Show that $R \cong R \oplus R$ as an R-module, so that the rank of R as a free module over itself is not well defined.

3. Let R be a commutative ring and M an $n \times n$ matrix over R, so that M defines an endomorphism T of the free R-module \mathbb{R}^n . Show that T is surjective if and only if it is an isomorphism, or if and only det M is a unit in R. Deduce that there is no surjective \mathbb{R} -module homomorphism from \mathbb{R}^m to \mathbb{R}^n if m < n.

4. In the setting of the last problem, show that T is injective if and only if det M is not a zero divisor in R.

5. Show that the free groups F_s . F_t of ranks s, t, respectively, are isomorphic if and only if s = t, by showing that the quotients of F_s , F_t by their respective commutator subgroups are not isomorphic if $s \neq t$.

Also skim section 6.3 and read sections 10.1-3 in the text.