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Welcome to graduate school (for the grad students) and to the
course! Algebra is (in my unbiased opinion) one of the coolest
subfields of mathematics; I am looking forward to exploring it
with you. I will begin with group theory. Assuming you have seen
the material through section 3.3 of the Dummit and Foote text, I
will begin with group actions on sets (Chapter 4). Although
everyone’s background is different and some of you may have
seen this material, I want to make sure we are all on the same
page with it. As it happens, I had not seen this material myself
when I started graduate school.
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Throughout in my lecture notes all page references will be to the
main text Dummit and Foote. I will provide such references
whenever possible, but I will also cover some topics not included
in that book. Let G be a group and A a set.

Definition, p. 41
We say that G acts on A if for every g ∈ G,a ∈ A there is g · a ∈ A
such that g1 · (g2 · a) = (g1g2) · a)and 1 · a = a for all
g1,g2 ∈ G,a ∈ A; here 1 denotes the identity element of G.
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More precisely, we say that G acts on A on the left in this case; if
instead G acted on the right, we would write a · g for the action
of g ∈ G on a ∈ A and would assume that (a ·g1) ·g2 = a · (g1g2).
Given a left action of G on A, we get a homomorphism π from G
to SA, the group of all permutations of A (bijections from A to
itself) under composition; here π(g) is the permutation sending
a ∈ A to g · a. Conversely, given such a homomorphism π, we
get a left action via the rule g · a = π(g)(a).
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Definition, p. 112
If G acts on A and a ∈ A then the stabilizer Ga (also denoted
Ga) of a is the subgroup of g ∈ G with g · a = a. The orbit of a,
denoted G · a, is the subset {g · a : g ∈ G} of A. The action of G
is transitive if the entire set A consists of just one orbit. The kernel
of the action is the intersection ∩a∈AGa of all stabilizers, or
equivalently the kernel of the homomorphism from G to SA. It is a
normal subgroup of G,
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As an example, the dihedral group Dn of order 2n, or the group
of symmetries of a regular n-gon in the plane for n ≥ 3, acts
transitively on the vertices of the n-gon and on its edges. The
stabilizer of a vertex consists of the identity and a single
reflection about the line joining that vertex to the opposite one
(if n is even) of the midpoint of the opposite side (if n is odd). The
stabilizer of an edge likewise consists of the identity and a single
reflection about the axis of symmetry passing through the
midpoint of the edge.
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In general, two of the most important examples occur when a
group G acts on itself, or on a closely related set. In the left
multiplication or left translation action, we set g · a = ga for
g,a ∈ G, taking A = G. More generally, if H is a subgroup of G
and G/H is the set of left cosets gH of H in G, we have an action
of G on G/H defined by g · aH = gaH. We also have the
conjugation action of G on itself, defined by g · a = gag−1. The
action of G on G/H is transitive; the stabilizer of a coset aH is the
conjugate subgroup aHa−1 of H (see Theorem 3, p. 119).The
conjugation action of G on itself, by contrast, is never transitive
(unless G is trivial). Its orbits are called conjugacy classes (p.
123). The stabilizer of a ∈ G with respect to this action is called
the centralizer of a and is denoted CG(a).
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In particular, any group G of order n is isomorphic to a subgroup
of the nth symmetric group Sn (the group of permutations of an
n-element set) (Cayley’s Theorem), since the kernel of the left
translation action is trivial. More generally, if H < G is a subgroup
of index n, then there is a homomorphism from G into Sn,
corresponding to the left translation action on G/H. Its kernel is
the intersection ∩g∈GgHg−1 of all conjugates of H in G. In
particular, if the order |G| of G fails to divide n! then the action of
G on G/H must have a nontrivial kernel, so that G has a
nontrivial normal subgroup.
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Any transitive action of a group on a set turns out to be
isomorphic to the left translation action on cosets of a suitable
subgroup. More precisely, if G acts on A and a ∈ A, then there is
a bijection from the orbit G · a to the coset space G/Ga sending
g · a to gGa; this is indeed a bijection since g1 · a = g2 · a if and
only if g1g−1

2 · a = a, or if and only if g1Ga = g2Ga. From
Lagrange’s Theorem (which I assume you have seen) we
deduce the famous Orbit Formula (which scandalously is never
stated in the text): if G is finite, acts on A, and a ∈ A, then
|G| = |Ga||G · a|; in words, the order of the group equals the
order of any orbit of it times the order the stabilizer of any
element of this orbit. We also see that the orbits of G on a set A
do not overlap: any two orbits are either identical or disjoint.
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As an interesting consequence, let G be finite and let H be a
subgroup of index p, where p is the smallest prime number
dividing |G|. Then H is necessarily normal in G (Corollary 5, p.
120). To see this observe that the homomorphism π from G into
Sp arising from the action of G on G/H has image of order
dividing p!. Since |G| is not divisible by any prime less than p, but
this image cannot be trivial (lest G fail to acts transitively on G/H)
this image must have order exactly p. Then the order of G is p
times the order of the kernel K of π, which in turn equals p times
the order of H. But K is the intersection of all conjugates of H, so
must be all of H, whence indeed H is normal in G, as claimed.
(Note however that given G it may well be that no such
subgroup H exists).
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Now let G be a finite group acting on itself by conjugation.
Conjugacy classes in G, being the orbits of G under the
conjugation action, do not overlap and the union of all such
classes is all of G. By the Orbit Formula and Lagrange’s Theorem,
the order of the conjugacy class of g ∈ G equals the index
[G : CG(g)] of the centralizer CG(g) of g in G. This order equals
one if and only if CG(g) = G, so that g lies in the center Z(G) of
G. We deduce

Theorem 7, p. 124; the class equation

We have |G| = |Z(G)|+
s∑

i=1
[G : CG(gi)], where g1, . . .gs are

representative of the conjugacy classes of noncentral elements
of G.
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The class equation is a particularly powerful tool for
understanding p-groups; that is, finite groups whose order is a
power of a prime p (see p. 139). We have

Theorem 1, p. 188
Let P be a p-group (for some prime p). Then

The center Z = Z(P) of P is nontrivial.
Any proper normal subgroup H of P intersects Z nontrivially.
P admits a chain of normal subgroups P0 ⊂ P1 ⊂ · · · ⊂ Pn = P,
where |Pi | = pi .
The normalizer NP(H) of any proper subgroup H of P strictly
contains P.
Any group of order p2 is abelian.
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Proof.
The terms |Z | and [P : CP(pi)] in the class equation of P are all
powers of p; since |Z | ≥ 1 and all indices [P : CP(pi)] are multiples
of p, |Z | must also be a multiple of p, so that Z ̸= 1. Any normal
subgroup H of P is the disjoint union of its P-conjugacy classes;
since one of these is the class of 1, the class equation again
shows that H ∩ Z ̸= 1. In particular, since the order of any
nonidentity element of Z is a power of p, Z must have an
element z of order p. We now recall that for any group G and
normal subgroup N there is a bijection between subgroups H̄ of
the quotient group G/N and subgroups H of G containing N,
sending H̄ to its preimage H under the canonical
homomorphism from G onto G/N.
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Proof.
Applying this bijection to the normal subgroup N of P of order p
generated by z and using induction, we get the desired chain of
normal subgroups Pi . Likewise, given any proper subgroup H,
either H contains N, in which case we can mod out by N and
apply induction, or else H fails to contain N and N lies in its
normalizer. Finally, if P has order p2 and its center Z is not all of P,
then choose z ∈ P, z /∈ Z ; then z commutes with itself and with Z ,
whence it commutes with all of P and lies in Z , a
contradiction.
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Thus any p-group can be viewed as built up out of only one
ingredient, namely the cyclic group of order p. Nevertheless,
there is still a very rich theory of p-groups; for example, there are
no fewer than 14 isomorphism classes of groups of order 16 = 24.
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In particular, any p-group G has the property admits a chain of
subgroups G0 = 1 ⊂ · · · ⊂ Gn = G such that each Gi is normal in
Gi+1 and the quotient Gi+1/Gi is cyclic of prime order. Groups
with this last property are called solvable and will play a very
important role in the theory of polynomials over a field, which I
will develop next quarter. If in addition the Gi can be chosen so
that Gi+1/Gi is central in Gn/Gi for all i, then one says that G is
nilpotent. The above arguments show that any p-group is in fact
nilpotent; it turns out that a finite group is nilpotent if and only if it
is a direct product of p-groups (for various primes p).
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