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I have exhibited three important and interesting finite symmetry
groups lying in G = SO3(R), namely the alternating groups A4
and A5 and the symmetric group S4. Today I will show that these
groups account for all the finite subgroups of G, apart from the
cyclic and dihedral groups. I will also state the Sylow theorems,
which you will prove in homework, using the left translation
action of a finite group on itself.
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I will warm up by looking at the groups O2(R) and SO2(R) of
orthogonal and special orthogonal 2× 2 matrices. It is well
known and easy to check that an orthogonal 2× 2 matrix with

determinant one takes the form
(

cos θ − sin θ
sin θ cos θ

)
for some θ ∈ R;

this is the matrix Mθ of counterclockwise rotation by θ radians.
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An orthogonal 2× 2 matrix of determinant −1 takes the form(
−cos θ sin θ

sin θ cos θ

)
for some θ; this is the matrix of a reflection. A

finite subgroup F of SO2(R) will contain Mθ for a unique smallest
positive θ, whence it is easy to see that this minimal θ = 2π/n for
some positive integer n and F is the cyclic group Cn of order n
generated by Mθ. A finite subgroup F of O2(R) not lying in SO2(R)
is then generated by Cn and a single reflection; it is the dihedral
group Dn of symmetries of a regular n-gon in the plane.
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Any matrix M ∈ O2(R) can be enlarged to a matrix in G = SO3(R)
by adding a third row and column, each consisting of two 0s
and a 1 if M ∈ SO2(R) and two 0s and a −1 if M /∈ SO2(R). Thus
the cyclic and dihedral groups Cn,Dn are indeed finite
subgroups of G. To analyze the other finite subgroups of G, begin
by observing for any M ∈ G the difference M − I (I the identity
matrix) is such that its determinant equals that of (M − I)Mt by
the product rule for determinants, which in turn equals
det(I −Mt) = det(I −M)t = det(I −M) = −det(M − I), since I −M
is obtained from M − I by changing the signs of all entires in its
three columns. It follows that det(M − I) = 0, so that M always
has 1 as an eigenvalue. Let v 6= 0 be a corresponding
eigenvector, we see that M preserves the plane orthogonal to v
in R3, whence it must act on this plane by a rotation (not a
reflection, since it has determinant 1). Thus every nonidenity
orientation-preserving orthogonal transformation M in R3 is a
rotation about a unique axis.
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In particular such an M necessarily fixes a unique pair ±v of unit
vectors in R3. Call these its poles. Given now a finite subgroup F
of G, let P be the set of poles of its nonidentity elements. If p is a
pole of some f ∈ F and g ∈ F , then gp is a pole of the conjugate
gfg−1 of f in F , whence F acts on the finite set P. Now I count the
poles in P in two ways, counting each k times if it is the pole of k
distinct nonidentity elements of F . Let N be the order of F . On
the one hand, every one of the N − 1 nonidentity elements of F
has exactly two poles, so there are 2(N − 1) poles altogether. On
the other, every pole p is a pole of n− 1 nonidentity elements of
F , where n is the order of the stabilizer of p in F . There are N

n poles
in the orbit of p, each having stabilizer of order n, by the Orbit
Formula, so if there are say k orbits of F in P and ni be the order
of the stabilizer of any element of the ith orbit, then we get

2(N − 1) =
k∑

i=1

N
ni
(ni − 1).
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Dividing by N we deduce that

2− 2
N

=
k∑

i=1

(1− 1
ni
)

Now each ni is at least 2, so that every term on the right side is at
least 1

2 , while the left side is less than 2. Hence there can be at
most 3 orbits. But there cannot be one orbit, lest the left side be
at least 1 while the right side is less than 1, so there are exactly
two or three orbits.
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If there are two orbits we get

2− 2
N

= (1− 1
n1

) + (1− 1
n2

);

recalling that each ni divides N, we see that this forces
n1 = n2 = N. In this case there are just two distinct poles p1,p2,
every nonidentity element of F has the pi as its poles, and each
pole pi forms an orbit by itself. In this case F ∼= Cn is the group of
rotational symmetries of a regular n-gon in the plane. The poles
are a point above this plane containing the n-gon and its
reflection through this plane to the point symmetrically below it.
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If there are three orbits we get 2− 2
N = (1− 1

n1
)+ (1− 1

n2
)+ (1− 1

n3
),

forcing 1
n1

+ 1
n2

+ 1
n3
> 1. Relabelling so that n1 ≤ n2 ≤ n3 and

recalling that each ni is at least 2, we find that that there is one
family of solutions to the displayed equation, namely
n1 = n2 = 2,n3 = N

2 , and three isolated solutions, namely
n1 = 2,n2 = n3 = 3,N = 12;n1 = 2,n2 = 3,n3 = 4,N = 24; and
finally n1 = 2,n2 = 3,n3 = 5,N = 60.
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In the first case, the three orbits of poles turn out to be the
vertices and the midpoints of the sides of a regular (n = N

2 )-gon
in the plane (rescaled so as to have length 1), together with the
two points above and below this plane mentioned in the
two-orbit case. This time these two points come together in a
single orbit and the group F is the full symmetry group Dn of the
regular n-gon.
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In the other three cases the three orbits of poles are the vertices,
midpoints of the edges, and centers of the faces of a regular
polyhedron in R3 (again rescaled to have length 1) and F is the
orientation-preserving symmetry group of this polyhedron. For
example, in the last case, the first orbit consists of the midpoints
of the 30 edges of either a dodecahedron or an icosahedron,
while the other two orbits consist of the twenty vertices (say of
the dodecahedron) and the twelve centers of its faces. The
stabilizer of the center of a face coincides with the stabilizer of
the face, which consists of five rotational symmetries of a
pentagon. The stabilizer of a vertex consists of the three
rotational symmetries of the equilateral triangle formed by the
three other vertices closest to the given one. A similar analysis
applies in the other cases. The only other possibilities for F
(besides Cn and Dn) are thus A4, S4, and A5, as claimed.
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This last argument is not in Dummit and Foote, but can be found
for example in Michael’s Artin’s text “Algebra”, whose second
edition was published in 2010.
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Turning again to to a more abstract setting, let G be a finite
group and p a prime. Write the order |G| of G as pkm, where 6 |m.

Sylow’s Theorem: Theorem 18, p. 139

G has a subgroup of order pk (a p-Sylow subgroup)
Any two p-Sylow subgroups are conjugate in G.
The number np of p-Sylow subgroups is congruent to 1mod p
and divides the index m of any such subgroup

You will prove this in homework this week; along the way you will
also prove that the number np,` of subgroups of G of order p` is
congruent to 1 mod p for any ` ≤ k .
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Sylow’s Theorem has many consequences for the structure of
finite groups (though it does not by any means classify all such
groups up to isomorphism). For example, let p,q be distinct
primes with p > q and let G be a group of order pq. The number
np of p-Sylow subgroups of G divides q and is congruent to 1
mod p, whence it must be 1, so that the unique p-Sylow
subgroup is normal. The same holds for the number nq of q-Sylow
subgroups provided that p is not congruent to 1 mod q. In this
case then G has normal cyclic subgroups Gp,Gq of orders p and
q, whence by counting elements one sees that
G = GpGq,Gp ∩Gq = 1. Then G is isomorphic to the direct
product Zp×Zq of cyclic groups of orders p and q, whence by a
standard elementary result G is itself cyclic of order pq: if p and
q are distinct primes with neither one congruent to 1 modulo the
other, then any group of order pq is cyclic. See p. 143.
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What if the larger prime p is congruent to 1 modulo the smaller
one q? In this case the number of q-Sylow subgroups need not
be 1, so that a q-Sylow subgroup of a group G of order pq need
not be normal. We still have all the ingredients necessary,
however, to realize G as the semidirect product of cyclic
subgroups Gp,Gq of orders p and q, with the former group
acting on the latter one by automorphisms. More precisely, the
automorphism group Aut Gq turns out to be cyclic of order q − 1
(as I will show later), so that it admits a unique cyclic subgroup of
order p. Consequently, if p,q are distinct primes with p
congruent to 1 mod q, then there is a unique nonabelian group
of order pq up to isomorphism, which is a semidirect product
Zq o Zp.
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