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I will continue with group actions, beginning with one of the
most important and interesting concrete examples of them, to
which I will return on a number of occasions. I will then take
amore abstract point of view, looking at groups acting on other
groups by automorphisms.
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First let G be a subgroup of the group GLn(R) of n × n invertible
matrices over R. Then for any g ∈ G and v ∈ Rn, regarded as a
column vector, one has the matrix product gv , another column
vector in Rn; it is clear that the rule g · v = gv defines an action
of G on Rn. In particular, given a subset S of Rn, the set of all g in
GLn(R) (or in a suitable subgroup H) preserving S is a subgroup of
GLn(R) acting on S (by symmetries). In particular, taking n = 3
and H = SO3(R), the group of orientation-preserving (and
length- and angle-preserving) symmetries of R3, one finds that
the set of such symmetries preserving S, which we may call its
symmetry group, acts on S in a natural way. We can also
characterize SO3(R) as the set of all M ∈ GL3(R) such that
detM = 1 and Mt = M−1, where Mt denotes the transpose of M.
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I now consider some very particular subsets of R3, namely the
Platonic solids (or regular polyhedra). I highly recommend
consulting the Wikipedia page for these, which features some
very cool animations that help a lot to visualize them. These
consist of the tetrahedron, having four triangular faces, six
edges, and four vertices; the cube, having six square faces,
twelve edges, and eight vertices; the octahedron, having eight
triangular faces, twelve edges, and six vertices; the
dodecahedron, having twelve pentagonal faces, thirty edges,
and twenty vertices; and the icosahedron, having twenty
triangular faces, thirty edges, and twelve vertices. There are only
three distinct symmetry groups of these objects, having orders
12, 24, and 60.
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In more detail, the tetrahedron has symmetry group (isomorphic
to) A4, the group of even permutations of its four vertices; the
cube and octahedron have symmetry group S4, consisting of all
permutations of its four pairs of opposite vertices (for the cube)
or opposite faces (for the octahedron). The last two cases of the
dodecahedron and icosahedron are the most subtle of all: the
symmetry group of both of these is A5, consisting of all even
permutations of five objects, these being the five cubes that one
can inscribe in the dodecahedron (see the Wikipedia page on
the dodecahedron).
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The reason that the cube and octahedron have the same
symmetry group is that any cube has an octahedron inscribed in
it and vice versa: if you take the center of each face of a cube
and join the centers of two faces whenever the faces have a
common edge, then you get an octahedron, and vice versa.
Similarly, the dodecahedron and icosahedron have the same
symmetry group, for the same reason.
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That the symmetry group of each solid has the claimed order
follows at once from the Orbit Formula. In each case, the
symmetry group acts transitively on the vertices, edges, and
faces. For example, the tetrahedron is such that each face has
stabilizer of order 3, consisting of the three rotations (by 0, 120,
and 240 degrees) of it about its center, so its symmetry group has
order 12. Each face of the cube similarly has exactly four
rotations stabilizing it, so the symmetry group of the cube has
order 24. The dodecahedron has five rotations stabilizing each
face, so a symmetry group of order 60. We will see below that A4
is the only subgroup of S4 of order 12 and that A5 is the only
subgroup of S5 of order 60.
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If one allows symmetries preserving lengths and angles but not
necessarily orientations, corresponding to matrices M ∈ GL3(R)
with Mt = M−1 but detM allowed to be ±1, then the symmetry
group of the tetrahedron enlarges to S4; all permutations of its
four vertices are now allowed. The cube and dodecahedron
behave differently. Each vertex has an opposite vertex, so the
transformation −1 (the negative of the identity) is now a
symmetry. Accordingly the full symmetry groups of the
cube/octahedron and dodecahedron/icosahedron are the
direct product S4 × Z2 and A5 × Z2, respectively, where Z2
denotes the cyclic group of order 2.
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Turning now to a more general setting, and moving on to
Chapter 5 in the text, let H be a group acting on another group
G by automorphisms, so that the associated homomorphism
from H to Perm(G) in fact sends H into the automorphism group
Aut G, we can construct a new group, called the semidirect
product of G and H and denoted G ⋊ H, as follows. Start with
the Cartesian product G × H and define a product on it via
(g1,h1)(g2,h2) = (g1(h1 · g2),h1h2). It is easy to check that the
group axioms are satisfied. Note that multiplication in the
second coordinate behaves exactly as it would for the direct
product G × H, while in the first coordinate the term g2 is
“twisted” by the action of h1; this is why the term “semidirect” is
used. If the action of H on G is trivial, so that every h ∈ G fixes
every g ∈ G, then G ⋊ H reduces to the direct product G × H.
See Theorem 10 on p. 176.
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A group K not given to us as the semidirect product of
subgroups G and H might be isomorphic to such a semidirect
product anyway. To decide when this happens, recall first that if
K has normal subgroups G,H such that K = GH and G ∩ H = 1,
then K is isomorphic to the direct product G × H. To see this one
argues first that if g1,g2,h1,h2 are such that g1h1 = g2h2 and
g1,g2 ∈ G, .h1,h2 ∈ H, then g1g−1

2 = h2h−1
1 ∈ G ∩ H = 1, whence

g1 = g2,h1 = h2. Next one observes that for g ∈ G,h ∈ H the
commutator ghg−1g−1 ∈ G ∩ H = 1, so that gh = hg. The
isomorphism K ∼= G × H follows at once.
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Now suppose that all of the above hypotheses on K ,G, and H
hold, except that we do not assume that H is normal in K . We still
have every k ∈ K equal to the product gh for a unique
g ∈ G,h ∈ H as above, but now a typical commutator ghg−1h−1

lies in G but not necessarily in H, so that it need not equal 1. We
still have an action of H on G by conjugation, so that
h · g = hgh−1 and the map sending g to hgh−1 (for fixed h ∈ H) is
an automorphism of G. In this case it is easy to check that K is
isomorphic to the product G ⋊ H relative to the above action of
H on G. See the discussion on p. 175.
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As an example, let K be the symmetric group Sn of all
permutations of {1, . . . ,n} for some n ≥ 2 and let G,H be the
alternating group An and the cyclic subgroup generated by the
transposition t interchanging 1 and 2, respectively. Then K is the
semidirect product of G and H, with H acting on G by
conjugation. As another finite example, let Rn be the group of
rotational symmetries of a regular n-gon Pn in the plane (which is
cyclic of order n) and S the cyclic subgroup generated by any
reflectional symmetry of Pn (which is cyclic of order 2). Then the
dihedral group Dn, the full symmetry group of Pn, is the
semidirect product of Rn and S. Further finite examples are given
on pages 178 and 179.
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Note that even if K has a nontrivial normal subgroup G it is not
necessarily isomorphic even to the semidirect product of G and
any other subgroup. For example, the quaternion group Q of
order 8 has three cyclic subgroups of order 4, all of them normal;
it also has a unique cyclic subgroup H of order 2. But each of the
subgroups of order 4 contains the subgroup of order 2, so that Q
is not the semidirect product of any normal subgroup and H. We
say that Q is a nonsplit extension of its quotient Z2 by any of its
cyclic subgroups of order 4. (By contrast, as noted above, the
dihedral group D4 of order 8 is the semidirect product of its
subgroup R4 of rotations and any of its subgroups generated a
single reflection). It turns out that any nonabelian group of order
p3, where p is an odd prime, is a semidirect product (see p. 179).
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The group A4 is very special among alternating groups in that it is
the semidirect product of the Klein 4-group K (consisting of the
identity and all three products of two disjoint transpositions) and
the cyclic subgroup generated by any 3-cycle. Likewise S4 is the
semidirect product of K and the symmetric group S3. But the
alternating group An is simple (has no nontrivial proper normal
subgroups) for n ≥ 5, as we will see below, so that it cannot be
realized as a nontrivial semidirect product.
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Recall the cycle notation for permutations (pp. 29,30): the
permutation π ∈ Sn sending the index i1 to i2, i2 to i3, . . . , im−1 to
im, im back to i1, then j1 to j2, j2 to j3, and so on, is denoted
(i1 i2 . . . im)(j1 j2 . . .) . . . Then the conjugate σπσ−1 of π by σ ∈ Sn
sends σ(i1) to σ(i2), and so on, so that its cycles have the same
lengths as those in π. Thus there are five conjugacy classes in S4,
represented by a 4-cycle, a 3-cycle, the product of two disjoint
2-cycles, a single 2-cycle, and the identity, of respective sizes
6, 8, 3, 6, and 1.
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A subgroup of S4 of order 12 and index 2 must be normal, so is a
union of conjugacy classes closed under multiplication, from
which one easily checks (as claimed above) that the only such
subgroup is A4. Similarly, S5 has seven conjugacy classes,
represented by a 5-cycle, a 4-cycle, the product of disjoint 3-
and 2-cycles, a 3-cycle, the product of two disjoint 2-cycles, a
single 2-cycle, and the identity, of respective sizes
24, 30, 20, 20, 15, 10, and 1. A subgroup of order 60 is again
normal and closed under multiplication, so must be A5. Similarly,
one can show that A5 is simple: its conjugacy classes have sizes
12,12,20,15, and 1.
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