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I continue with review, recalling the classification of finitely
generated modules over PIDs, its applications to matrices, and
representation theory.
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Let R be a PID. Any finitely generated module M over R is then a
direct sum of quotients of R. More precisely, we can write M as a

direct sum
m⊕

i=1
R/(ai), where the elements ai ∈ R can be chosen

so that either a1|a2| · · · |am (elementary divisor decomposition;
we allow ai = 0 here) or ai = pni

i , where pi ∈ R is either prime or 0
and ni is a positive integer (primary decomposition version). In
the elementary divisor decomposition, the ai are unique up to
unit multiples; in the primary decomposition, the primes pi are
likewise unique up to unit multiples and the exponents are
unique up to reordering exponents of the same prime. The
module M is free over R if and only if it is torsion-free (so that
rm = 0 for r ∈ R,m ∈ M if and only if r = 0 or m = 0). In particular,
any submodule of a free module is free and M is free if and only
if it is projective. I noted last time that M (not now assumed
finitely generated) is injective if and only if it is divisible as an
R-module.
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In particular, any finitely generated abelian group is a direct
product of cyclic groups, some of which might have infinite
order. The ones of finite order can either be arranged so the
order of each divides that of the next or each has prime-power
order (where the primes involved might or might not differ from
one cyclic factor to the next). Any finite subgroup of the
multiplicative group of a field (in particular, the full multiplicative
group of a finite field) is cyclic.
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Applying the classification to the case R = K [x ] (the ring of
polynomials in one variable over a field K ) and M = V is a
finite-dimensional vector space over K on which the variable x
acts by a linear transformation T , we can rewrite V as the direct
sum of proper quotients R/(qi) of R, taking the qi to be monic
polynomials such that either q1|q2 · · · or qi = pni

i for some
irreducible polynomial pi . Choosing a basis of V for each
quotient R/(qi) consisting of powers of x , we find that the matrix
of T with respect to this basis is block diagonal with the block
corresponding to the quotient R/(qi) equal to the companion
matrix attached to qi (ones below teh diagonal, negatives of
the nonleading coefficients of qi in the right column, all other
entries 0). This is the rational canonical form of (any matrix of) T .
If the basefield K contains all the eigenvalues of T , then we can
replace this form by the Jordan form, in which the blocks have
all diagonal entries equal and ones above the diagonal.
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The minimal and characteristic polynomials of T are easy to read
off from its rational canonical form: if the blocks are companion
matrices of q1, . . . ,qm, then the minimal polynomial of T is the
least common multiple of the qi while its characteristic
polynomial is the product of the qi (up to sign). In particular, up
to similarity, there are only finitely many matrices of a fixed size
over a field K with a specified minimal polynomial, or with a
specified characteristic polynomial. The transformation T (or the
matrix of it with respect to any basis) is diagonalizable if and only
if the minimal polynomial of T is the product of distinct linear
factors. Also any square matrix over K is similar to its transpose.
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Turning now to the representation theory of finite groups G, we
begin with the basic definition that a representation of G (over a
field K ) is a homomorphism π : G → GLn(K ) for some n, where
GLn(K ) denotes the group of invertible n × n matrices over K .
Two representations π, π′, both with range in the same GLn(K ),
are equivalent if there is x ∈ GLn(K ) with π(g) = xπ′(g)x−1 for all
g ∈ G. Equivalently, one can speak of G-modules: these are
finite-dimensional vector spaces V over K such that G acts on V
by K -linear transformations. The group algebra KG, consisting by
definition of all K -linear combinations

∑
g∈G

kgg with the kg ∈ K

with multiplication given by multiplication in G together with the
distributive law, provides a handy ring R such that R-modules are
the same thing as G-modules over K .
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If the characteristic of the field K does not divide the order n of
G, then any G-module V is a direct sum of irreducible
G-modules W , none of them admitting any G-submodule apart
from 0 and W , If moreover K is algebraically closed, then KG is
isomorphic as a K -algebra to a direct sum of finitely many rings
Mi = Mni (K ) of ni × ni matrices over K . Any irreducible G-module
is then isomorphic to the space K ni of column vectors of length
ni over K for a unique index i, on which Mi acts by matrix
multiplication and Mj acts by 0 for j ̸= i. In particular, G has only
finitely many irreducible representations up to equivalence;
more precisely, the number of such representations equals the
number of conjugacy classes in G.
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Restricting for simplicity to the case K = C, it turns out that any
representation π of G is determined up to equivalence by its
character χ, defined by χ(g) =tr π(g), where tr denotes the
trace of a matrix. The characters χ, χ′ of inequivalent irreducible
representations π, π′ satisfy the orthogonality relation∑

g∈G χ(g)χ̄′(g) = 0, where the bar denotes complex
conjugation; if instead χ′ = χ, then

∑
g∈G χ(g)χ̄(g) = n = |G|. We

also have orthogonality relations for the columns of a character
table: if g,h ∈ G are not conjugate in G, then

∑
i χi(g)χ̄i(h) = 0,

where the sum takes place over the irreducible characters of G.
If g and h are conjugate in G, then∑

i χi(g)χ̄i(h) =
∑

i χi(g)χ̄i(g) = n
|cg| , where |cg| denotes the size

of the conjugacy class of g. The values χ(g) of any character
are algebraic integers; more precisely, they are sums of roots of 1
in C. The dimension d of any irreducible representation divides
the order n of G.
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If G is abelian, its representation theory is especially simple: all of
its irreducible representations over C are one-dimensional and
there are as many such representations as elements of G. Just as
a warning, this is not true even for cyclic groups of order n if the
basefield K does not contain n distinct nth roots of 1; over the
rational field Q, for example, irreducible representations of cyclic
groups can have arbitrarily large degree.

Lecture 12-4: Review, continued December 4, 2024 10 / 1



Using characters one can show that if a finite group G has a
nonidentity conjugacy class C whose order is a power of a
prime, then G is not simple. From this it easily follows that any
group whose order is the product of two prime powers is
nonsimple (Burnside’s paqb Theorem).
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You should be familiar with small character tables like those of
the symmetric group S3, the dihedral group D4 of order 8, and
the alternating group A4. Most of the entries in these tables can
be worked out from the orthogonality relations, rather than
actually having to compute traces.
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