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This week will be devoted to review, mostly in the chronological
order that topics were originally presented.
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In group theory, I concentrated on group actions on sets, the
central result being the Orbit Formula that given a finite group G
acting on a set S and s ∈ S, the product of the orders of the
stabilizer Gs of s in G and the orbit G.s through s equals the order
of G. In particular, using the conjugation action of a group on
itself, I showed that any group G of order pn for a prime p admits
normal subgroups of all possible orders pm for m ≤ n and a
nontrivial center Z . Moreover, a group of order p2 is abelian.
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The structure of arbitrary groups is related to that of p-groups via
Sylow’s Theorems, which state that

1 Any group of order par for p a prime not dividing r has a
subgroup of order pa.

2 Any two such subgroups are conjugate.
3 The number np of such subgroups satisfies np|r and np ≡ 1

mod p.
In particular, if p,q are primes with p < q, then the q-Sylow
subgroup of any group G of order pq is (unique and) normal; the
p-Sylow subgroup is also normal and in fact G is cyclic if q ̸≡ 1
mod p.
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Turning now to left modules M over rings, recall that M is
projective if the covariant functor homR(M,−) is exact, or
equivalently if given any surjective map π : N → P of R-modules
and a homomorphism f : M → P there is a homomorphism
g : M → N with f = πg. The functor homR(M,−) is always left
exact, but not in general right exact. M is projective if and only if
it is a direct summand of a free R-module F (so that F is
isomorphic to a direct sum of copies of R). Any projective
module over R is free if R is a PID, but not in general, even if R is
commutative. Any module is a homomorphic image of a free
(and thus projective) module.
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In a formally very similar way, an R-module M is injective if the
contravariant functor homR(−.M) is exact, or equivalently if any R
module map from A to M always extends to a map from B to M
whenever A is a submodule of B. The functor hom(−,M), like
hom(M,−) is always left exact. There is no simple characterization
of injective modules in general. Over a PID, M is injective if and
only if it is divisible, so that M = rM for for all r ̸= 0 in R. This is not
the same as saying that M is a module over the quotient field K
of R, though certainly any such module is injective over R. Any
module is a submodule of an injective one.
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The tensor product M ⊗R N of two modules M,N over a
commutative ring R may be defined as the quotient of the free
module on the Cartesian product M × N by the submodule
generated by (m1 + m2,n)− (m1,n)− (m2,n), (m,n1 + n2)−
(m,n1)− (m,n2), r(m,n)− (rm,n) and r(m,n)− (m, rn) for
m,mi ∈ M,n,ni ∈ N, r ∈ R. If M and N are free of ranks r and s
over R, then M ⊗ RN is free of rank rs over R, but in general the
size of M ⊗R N may be hard to predict. It is possible for M ⊗R N to
be 0 even if M and N are nonzero, for example. Also the ring R is
crucial here: if the same M,N are simultaneously modules over
different rings R, S, then M ⊗R N may be very different from
M ⊗S N.
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One can also tensor one-sided modules over noncommutative
rings. More precisely, if M and N are respectively right and left
modules over the same ring R, then the tensor product M ⊗R N
makes sense, replacing the relations
r(m,n)− (rm,n), r(m,n)− (m, rn) above by the single relation
(mr ,n)− (m, rn), This product has only the structure of an abelian
group, unless M also carries a left module structure for another
ring S commuting with the right R-module structure; in that case
M ⊗R N is also a left S-module. This construction was used in class
to define the module W = CG ⊗CH V induced from a module V
over a subgroup H of a group G; then W has a G-module
structure.
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Analogous to the functors homR(M,−) and homR(−,M)
mentioned above from left R-modules to abelian groups (where
M is a fixed left R-module) one has the functor M ⊗R − from left
R-modules to abelian groups, where now M is a fixed right
R-module. This time the functor is right but not left exact, in
general; if it is (left) exact, then the module M is called flat.
Projective modules are flat, but not conversely; if for example R is
an integral domain, then any module over its quotient field K is
flat as an R-module.
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A projective resolution of an R-module M is an exact (possibly
infinite) sequence · · · → P1 → P0 → M of R-module maps with the
Pi projective over R; such a sequence exists for any M and in fact
the Pi can be taken to be free over R. Similarly, one has an
injective resolution M → I0 → I1 · · · of M, where the sequence is
exact and the Ii are injective. Given another R-module N and a
projective resolution {Pi} of M, one can apply the functor
homR(−,N) to each term, obtaining the cochain complex
homR(P0,N) → homR(P1,N) → · · · The ith cohomology group of
this complex, that is, the kernel of the map from homR(Pi ,N) to
homR(Pi+1,N) modulo the image of the map from homR(Pi−1,N)
to homR(Pi ,N), is defined to be the Ext group Extn

R(M,N). The 0th
such group Ext0

R(M,N) is just homR(M,N). The Ext groups do not
depend on the choice of projective resolution.
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The groups Extn
R(M,N) provide a measure of non-projectivity of

M, since M is projective if and only if Extn
R(M,N) = 0 for all

Rmodules N and integers n ≥ 1. It often happens that the Ext
groups have a periodic structure if they do not vanish for
sufficiently large n.
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Next time I will review the classification of finitely generated
modules over a PID and the applications of this to canonical
forms of matrices. I will also start to review the representation
theory of finite groups.
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